Υπολογισμός
\frac{116}{99}\approx 1,171717172
Παράγοντας
\frac{2 ^ {2} \cdot 29}{3 ^ {2} \cdot 11} = 1\frac{17}{99} = 1,1717171717171717
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{2}{3}-\frac{3\times 4}{4\times 11}+\frac{\frac{1}{3}}{\frac{3}{7}}
Πολλαπλασιάστε το \frac{3}{4} επί \frac{4}{11} πολλαπλασιάζοντας τον αριθμητή επί τον αριθμητή και τον παρονομαστή επί τον παρονομαστή.
\frac{2}{3}-\frac{3}{11}+\frac{\frac{1}{3}}{\frac{3}{7}}
Απαλείψτε το 4 στον αριθμητή και παρονομαστή.
\frac{22}{33}-\frac{9}{33}+\frac{\frac{1}{3}}{\frac{3}{7}}
Το ελάχιστο κοινό πολλαπλάσιο των 3 και 11 είναι 33. Μετατροπή των \frac{2}{3} και \frac{3}{11} σε κλάσματα με παρονομαστή 33.
\frac{22-9}{33}+\frac{\frac{1}{3}}{\frac{3}{7}}
Από τη στιγμή που οι αριθμοί \frac{22}{33} και \frac{9}{33} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{13}{33}+\frac{\frac{1}{3}}{\frac{3}{7}}
Αφαιρέστε 9 από 22 για να λάβετε 13.
\frac{13}{33}+\frac{1}{3}\times \frac{7}{3}
Διαιρέστε το \frac{1}{3} με το \frac{3}{7}, πολλαπλασιάζοντας το \frac{1}{3} με τον αντίστροφο του \frac{3}{7}.
\frac{13}{33}+\frac{1\times 7}{3\times 3}
Πολλαπλασιάστε το \frac{1}{3} επί \frac{7}{3} πολλαπλασιάζοντας τον αριθμητή επί τον αριθμητή και τον παρονομαστή επί τον παρονομαστή.
\frac{13}{33}+\frac{7}{9}
Κάντε τους πολλαπλασιασμούς στο κλάσμα \frac{1\times 7}{3\times 3}.
\frac{39}{99}+\frac{77}{99}
Το ελάχιστο κοινό πολλαπλάσιο των 33 και 9 είναι 99. Μετατροπή των \frac{13}{33} και \frac{7}{9} σε κλάσματα με παρονομαστή 99.
\frac{39+77}{99}
Από τη στιγμή που οι αριθμοί \frac{39}{99} και \frac{77}{99} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{116}{99}
Προσθέστε 39 και 77 για να λάβετε 116.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}