Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image
Πραγματικό τμήμα
Tick mark Image

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\frac{2+2i}{1\times 1+1\left(-i\right)+i-i^{2}}
Πολλαπλασιάστε τους μιγαδικούς αριθμούς 1+i και 1-i όπως πολλαπλασιάζετε τα διώνυμα.
\frac{2+2i}{1\times 1+1\left(-i\right)+i-\left(-1\right)}
Εξ ορισμού, το i^{2} είναι -1.
\frac{2+2i}{1-i+i+1}
Κάντε τους πολλαπλασιασμούς στο 1\times 1+1\left(-i\right)+i-\left(-1\right).
\frac{2+2i}{1+1+\left(-1+1\right)i}
Συνδυάστε τα πραγματικά και τα φανταστικά μέρη: 1-i+i+1.
\frac{2+2i}{2}
Κάντε τις προσθέσεις στο 1+1+\left(-1+1\right)i.
1+i
Διαιρέστε το 2+2i με το 2 για να λάβετε 1+i.
Re(\frac{2+2i}{1\times 1+1\left(-i\right)+i-i^{2}})
Πολλαπλασιάστε τους μιγαδικούς αριθμούς 1+i και 1-i όπως πολλαπλασιάζετε τα διώνυμα.
Re(\frac{2+2i}{1\times 1+1\left(-i\right)+i-\left(-1\right)})
Εξ ορισμού, το i^{2} είναι -1.
Re(\frac{2+2i}{1-i+i+1})
Κάντε τους πολλαπλασιασμούς στο 1\times 1+1\left(-i\right)+i-\left(-1\right).
Re(\frac{2+2i}{1+1+\left(-1+1\right)i})
Συνδυάστε τα πραγματικά και τα φανταστικά μέρη: 1-i+i+1.
Re(\frac{2+2i}{2})
Κάντε τις προσθέσεις στο 1+1+\left(-1+1\right)i.
Re(1+i)
Διαιρέστε το 2+2i με το 2 για να λάβετε 1+i.
1
Το πραγματικό μέρος του 1+i είναι 1.