Υπολογισμός
\frac{x-14}{2x-5}
Ανάπτυξη
\frac{x-14}{2x-5}
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{1-2x}{\left(x-2\right)\left(2x-5\right)}+\frac{x-5}{x-2}-\frac{x+1}{2x-5}
Παραγοντοποιήστε με το 2x^{2}-9x+10.
\frac{1-2x}{\left(x-2\right)\left(2x-5\right)}+\frac{\left(x-5\right)\left(2x-5\right)}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των \left(x-2\right)\left(2x-5\right) και x-2 είναι \left(x-2\right)\left(2x-5\right). Πολλαπλασιάστε το \frac{x-5}{x-2} επί \frac{2x-5}{2x-5}.
\frac{1-2x+\left(x-5\right)\left(2x-5\right)}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Από τη στιγμή που οι αριθμοί \frac{1-2x}{\left(x-2\right)\left(2x-5\right)} και \frac{\left(x-5\right)\left(2x-5\right)}{\left(x-2\right)\left(2x-5\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{1-2x+2x^{2}-5x-10x+25}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Κάντε τους πολλαπλασιασμούς στο 1-2x+\left(x-5\right)\left(2x-5\right).
\frac{26-17x+2x^{2}}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Συνδυάστε παρόμοιους όρους στο 1-2x+2x^{2}-5x-10x+25.
\frac{\left(x-2\right)\left(2x-13\right)}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Παραγοντοποιήστε τις παραστάσεις που δεν έχουν ήδη παραγοντοποιηθεί στο \frac{26-17x+2x^{2}}{\left(x-2\right)\left(2x-5\right)}.
\frac{2x-13}{2x-5}-\frac{x+1}{2x-5}
Απαλείψτε το x-2 στον αριθμητή και παρονομαστή.
\frac{2x-13-\left(x+1\right)}{2x-5}
Από τη στιγμή που οι αριθμοί \frac{2x-13}{2x-5} και \frac{x+1}{2x-5} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{2x-13-x-1}{2x-5}
Κάντε τους πολλαπλασιασμούς στο 2x-13-\left(x+1\right).
\frac{x-14}{2x-5}
Συνδυάστε παρόμοιους όρους στο 2x-13-x-1.
\frac{1-2x}{\left(x-2\right)\left(2x-5\right)}+\frac{x-5}{x-2}-\frac{x+1}{2x-5}
Παραγοντοποιήστε με το 2x^{2}-9x+10.
\frac{1-2x}{\left(x-2\right)\left(2x-5\right)}+\frac{\left(x-5\right)\left(2x-5\right)}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των \left(x-2\right)\left(2x-5\right) και x-2 είναι \left(x-2\right)\left(2x-5\right). Πολλαπλασιάστε το \frac{x-5}{x-2} επί \frac{2x-5}{2x-5}.
\frac{1-2x+\left(x-5\right)\left(2x-5\right)}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Από τη στιγμή που οι αριθμοί \frac{1-2x}{\left(x-2\right)\left(2x-5\right)} και \frac{\left(x-5\right)\left(2x-5\right)}{\left(x-2\right)\left(2x-5\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{1-2x+2x^{2}-5x-10x+25}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Κάντε τους πολλαπλασιασμούς στο 1-2x+\left(x-5\right)\left(2x-5\right).
\frac{26-17x+2x^{2}}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Συνδυάστε παρόμοιους όρους στο 1-2x+2x^{2}-5x-10x+25.
\frac{\left(x-2\right)\left(2x-13\right)}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Παραγοντοποιήστε τις παραστάσεις που δεν έχουν ήδη παραγοντοποιηθεί στο \frac{26-17x+2x^{2}}{\left(x-2\right)\left(2x-5\right)}.
\frac{2x-13}{2x-5}-\frac{x+1}{2x-5}
Απαλείψτε το x-2 στον αριθμητή και παρονομαστή.
\frac{2x-13-\left(x+1\right)}{2x-5}
Από τη στιγμή που οι αριθμοί \frac{2x-13}{2x-5} και \frac{x+1}{2x-5} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{2x-13-x-1}{2x-5}
Κάντε τους πολλαπλασιασμούς στο 2x-13-\left(x+1\right).
\frac{x-14}{2x-5}
Συνδυάστε παρόμοιους όρους στο 2x-13-x-1.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}