Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image
Διαφόριση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\frac{x+1}{\left(x-2\right)\left(x+1\right)}-\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των x-2 και x+1 είναι \left(x-2\right)\left(x+1\right). Πολλαπλασιάστε το \frac{1}{x-2} επί \frac{x+1}{x+1}. Πολλαπλασιάστε το \frac{3}{x+1} επί \frac{x-2}{x-2}.
\frac{x+1-3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
Από τη στιγμή που οι αριθμοί \frac{x+1}{\left(x-2\right)\left(x+1\right)} και \frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{x+1-3x+6}{\left(x-2\right)\left(x+1\right)}
Κάντε τους πολλαπλασιασμούς στο x+1-3\left(x-2\right).
\frac{-2x+7}{\left(x-2\right)\left(x+1\right)}
Συνδυάστε παρόμοιους όρους στο x+1-3x+6.
\frac{-2x+7}{x^{2}-x-2}
Αναπτύξτε το \left(x-2\right)\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+1}{\left(x-2\right)\left(x+1\right)}-\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των x-2 και x+1 είναι \left(x-2\right)\left(x+1\right). Πολλαπλασιάστε το \frac{1}{x-2} επί \frac{x+1}{x+1}. Πολλαπλασιάστε το \frac{3}{x+1} επί \frac{x-2}{x-2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+1-3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
Από τη στιγμή που οι αριθμοί \frac{x+1}{\left(x-2\right)\left(x+1\right)} και \frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+1-3x+6}{\left(x-2\right)\left(x+1\right)})
Κάντε τους πολλαπλασιασμούς στο x+1-3\left(x-2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2x+7}{\left(x-2\right)\left(x+1\right)})
Συνδυάστε παρόμοιους όρους στο x+1-3x+6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2x+7}{x^{2}+x-2x-2})
Εφαρμόστε την επιμεριστική ιδιότητα πολλαπλασιάζοντας κάθε όρο του x-2 με κάθε όρο του x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2x+7}{x^{2}-x-2})
Συνδυάστε το x και το -2x για να λάβετε -x.
\frac{\left(x^{2}-x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(-2x^{1}+7)-\left(-2x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-2)}{\left(x^{2}-x^{1}-2\right)^{2}}
Για οποιεσδήποτε δύο διαφορίσιμες συναρτήσεις, η παράγωγος του πηλίκου των δύο συναρτήσεων είναι ο παρονομαστής επί την παράγωγο του αριθμητή μείον τον αριθμητή επί την παράγωγο του παρονομαστή, δια του τετραγώνου του παρονομαστή.
\frac{\left(x^{2}-x^{1}-2\right)\left(-2\right)x^{1-1}-\left(-2x^{1}+7\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
\frac{\left(x^{2}-x^{1}-2\right)\left(-2\right)x^{0}-\left(-2x^{1}+7\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Απλοποιήστε.
\frac{x^{2}\left(-2\right)x^{0}-x^{1}\left(-2\right)x^{0}-2\left(-2\right)x^{0}-\left(-2x^{1}+7\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Πολλαπλασιάστε το x^{2}-x^{1}-2 επί -2x^{0}.
\frac{x^{2}\left(-2\right)x^{0}-x^{1}\left(-2\right)x^{0}-2\left(-2\right)x^{0}-\left(-2x^{1}\times 2x^{1}-2x^{1}\left(-1\right)x^{0}+7\times 2x^{1}+7\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Πολλαπλασιάστε το -2x^{1}+7 επί 2x^{1}-x^{0}.
\frac{-2x^{2}-\left(-2x^{1}\right)-2\left(-2\right)x^{0}-\left(-2\times 2x^{1+1}-2\left(-1\right)x^{1}+7\times 2x^{1}+7\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις με την ίδια βάση, προσθέστε τους εκθέτες τους.
\frac{-2x^{2}+2x^{1}+4x^{0}-\left(-4x^{2}+2x^{1}+14x^{1}-7x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Απλοποιήστε.
\frac{2x^{2}-14x^{1}+11x^{0}}{\left(x^{2}-x^{1}-2\right)^{2}}
Συνδυάστε όμοιους όρους.
\frac{2x^{2}-14x+11x^{0}}{\left(x^{2}-x-2\right)^{2}}
Για κάθε όρο t, t^{1}=t.
\frac{2x^{2}-14x+11\times 1}{\left(x^{2}-x-2\right)^{2}}
Για κάθε όρο t εκτός 0, t^{0}=1.
\frac{2x^{2}-14x+11}{\left(x^{2}-x-2\right)^{2}}
Για κάθε όρο t, t\times 1=t και 1t=t.