Λύση ως προς x
x = \frac{10}{3} = 3\frac{1}{3} \approx 3,333333333
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
1=\left(x-3\right)\times 3
Η μεταβλητή x δεν μπορεί να είναι ίση με οποιαδήποτε από τις τιμές -3,3 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με το \left(x-3\right)\left(x+3\right), δηλαδή τον ελάχιστο κοινό πολλαπλάσιο των x^{2}-9,x+3.
1=3x-9
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το x-3 με το 3.
3x-9=1
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
3x=1+9
Προσθήκη 9 και στις δύο πλευρές.
3x=10
Προσθέστε 1 και 9 για να λάβετε 10.
x=\frac{10}{3}
Διαιρέστε και τις δύο πλευρές με 3.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}