Υπολογισμός
\frac{2x}{\left(x+2\right)\left(x-2\right)^{2}}
Διαφόριση ως προς x
-\frac{4\left(x^{2}+x+2\right)}{\left(x+2\right)^{2}\left(x-2\right)^{3}}
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{1}{\left(x-2\right)\left(x+2\right)}+\frac{1}{\left(x-2\right)^{2}}
Παραγοντοποιήστε με το x^{2}-4. Παραγοντοποιήστε με το x^{2}-4x+4.
\frac{x-2}{\left(x+2\right)\left(x-2\right)^{2}}+\frac{x+2}{\left(x+2\right)\left(x-2\right)^{2}}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των \left(x-2\right)\left(x+2\right) και \left(x-2\right)^{2} είναι \left(x+2\right)\left(x-2\right)^{2}. Πολλαπλασιάστε το \frac{1}{\left(x-2\right)\left(x+2\right)} επί \frac{x-2}{x-2}. Πολλαπλασιάστε το \frac{1}{\left(x-2\right)^{2}} επί \frac{x+2}{x+2}.
\frac{x-2+x+2}{\left(x+2\right)\left(x-2\right)^{2}}
Από τη στιγμή που οι αριθμοί \frac{x-2}{\left(x+2\right)\left(x-2\right)^{2}} και \frac{x+2}{\left(x+2\right)\left(x-2\right)^{2}} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{2x}{\left(x+2\right)\left(x-2\right)^{2}}
Συνδυάστε παρόμοιους όρους στο x-2+x+2.
\frac{2x}{x^{3}-2x^{2}-4x+8}
Αναπτύξτε το \left(x+2\right)\left(x-2\right)^{2}.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}