Υπολογισμός
\frac{1-3x-3x^{2}}{\left(x+1\right)^{2}}
Διαφόριση ως προς x
-\frac{3x+5}{\left(x+1\right)^{3}}
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{1}{\left(x+1\right)^{2}}-\frac{3x}{x+1}
Παραγοντοποιήστε με το x^{2}+2x+1.
\frac{1}{\left(x+1\right)^{2}}-\frac{3x\left(x+1\right)}{\left(x+1\right)^{2}}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των \left(x+1\right)^{2} και x+1 είναι \left(x+1\right)^{2}. Πολλαπλασιάστε το \frac{3x}{x+1} επί \frac{x+1}{x+1}.
\frac{1-3x\left(x+1\right)}{\left(x+1\right)^{2}}
Από τη στιγμή που οι αριθμοί \frac{1}{\left(x+1\right)^{2}} και \frac{3x\left(x+1\right)}{\left(x+1\right)^{2}} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{1-3x^{2}-3x}{\left(x+1\right)^{2}}
Κάντε τους πολλαπλασιασμούς στο 1-3x\left(x+1\right).
\frac{1-3x^{2}-3x}{x^{2}+2x+1}
Αναπτύξτε το \left(x+1\right)^{2}.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}