Υπολογισμός
\frac{2x+11}{\left(x+5\right)\left(x+6\right)}
Διαφόριση ως προς x
-\frac{2x^{2}+22x+61}{\left(\left(x+5\right)\left(x+6\right)\right)^{2}}
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{x+6}{\left(x+5\right)\left(x+6\right)}+\frac{x+5}{\left(x+5\right)\left(x+6\right)}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των x+5 και x+6 είναι \left(x+5\right)\left(x+6\right). Πολλαπλασιάστε το \frac{1}{x+5} επί \frac{x+6}{x+6}. Πολλαπλασιάστε το \frac{1}{x+6} επί \frac{x+5}{x+5}.
\frac{x+6+x+5}{\left(x+5\right)\left(x+6\right)}
Από τη στιγμή που οι αριθμοί \frac{x+6}{\left(x+5\right)\left(x+6\right)} και \frac{x+5}{\left(x+5\right)\left(x+6\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{2x+11}{\left(x+5\right)\left(x+6\right)}
Συνδυάστε παρόμοιους όρους στο x+6+x+5.
\frac{2x+11}{x^{2}+11x+30}
Αναπτύξτε το \left(x+5\right)\left(x+6\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+6}{\left(x+5\right)\left(x+6\right)}+\frac{x+5}{\left(x+5\right)\left(x+6\right)})
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των x+5 και x+6 είναι \left(x+5\right)\left(x+6\right). Πολλαπλασιάστε το \frac{1}{x+5} επί \frac{x+6}{x+6}. Πολλαπλασιάστε το \frac{1}{x+6} επί \frac{x+5}{x+5}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+6+x+5}{\left(x+5\right)\left(x+6\right)})
Από τη στιγμή που οι αριθμοί \frac{x+6}{\left(x+5\right)\left(x+6\right)} και \frac{x+5}{\left(x+5\right)\left(x+6\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+11}{\left(x+5\right)\left(x+6\right)})
Συνδυάστε παρόμοιους όρους στο x+6+x+5.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+11}{x^{2}+6x+5x+30})
Εφαρμόστε την επιμεριστική ιδιότητα πολλαπλασιάζοντας κάθε όρο του x+5 με κάθε όρο του x+6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+11}{x^{2}+11x+30})
Συνδυάστε το 6x και το 5x για να λάβετε 11x.
\frac{\left(x^{2}+11x^{1}+30\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+11)-\left(2x^{1}+11\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+11x^{1}+30)}{\left(x^{2}+11x^{1}+30\right)^{2}}
Για οποιεσδήποτε δύο διαφορίσιμες συναρτήσεις, η παράγωγος του πηλίκου των δύο συναρτήσεων είναι ο παρονομαστής επί την παράγωγο του αριθμητή μείον τον αριθμητή επί την παράγωγο του παρονομαστή, δια του τετραγώνου του παρονομαστή.
\frac{\left(x^{2}+11x^{1}+30\right)\times 2x^{1-1}-\left(2x^{1}+11\right)\left(2x^{2-1}+11x^{1-1}\right)}{\left(x^{2}+11x^{1}+30\right)^{2}}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
\frac{\left(x^{2}+11x^{1}+30\right)\times 2x^{0}-\left(2x^{1}+11\right)\left(2x^{1}+11x^{0}\right)}{\left(x^{2}+11x^{1}+30\right)^{2}}
Απλοποιήστε.
\frac{x^{2}\times 2x^{0}+11x^{1}\times 2x^{0}+30\times 2x^{0}-\left(2x^{1}+11\right)\left(2x^{1}+11x^{0}\right)}{\left(x^{2}+11x^{1}+30\right)^{2}}
Πολλαπλασιάστε το x^{2}+11x^{1}+30 επί 2x^{0}.
\frac{x^{2}\times 2x^{0}+11x^{1}\times 2x^{0}+30\times 2x^{0}-\left(2x^{1}\times 2x^{1}+2x^{1}\times 11x^{0}+11\times 2x^{1}+11\times 11x^{0}\right)}{\left(x^{2}+11x^{1}+30\right)^{2}}
Πολλαπλασιάστε το 2x^{1}+11 επί 2x^{1}+11x^{0}.
\frac{2x^{2}+11\times 2x^{1}+30\times 2x^{0}-\left(2\times 2x^{1+1}+2\times 11x^{1}+11\times 2x^{1}+11\times 11x^{0}\right)}{\left(x^{2}+11x^{1}+30\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις με την ίδια βάση, προσθέστε τους εκθέτες τους.
\frac{2x^{2}+22x^{1}+60x^{0}-\left(4x^{2}+22x^{1}+22x^{1}+121x^{0}\right)}{\left(x^{2}+11x^{1}+30\right)^{2}}
Απλοποιήστε.
\frac{-2x^{2}-22x^{1}-61x^{0}}{\left(x^{2}+11x^{1}+30\right)^{2}}
Συνδυάστε όμοιους όρους.
\frac{-2x^{2}-22x-61x^{0}}{\left(x^{2}+11x+30\right)^{2}}
Για κάθε όρο t, t^{1}=t.
\frac{-2x^{2}-22x-61}{\left(x^{2}+11x+30\right)^{2}}
Για κάθε όρο t εκτός 0, t^{0}=1.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}