Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

x^{2}+x=1\times 2
Πολλαπλασιάστε και τις δύο πλευρές με 2, το αντίστροφο του \frac{1}{2}.
x^{2}+x=2
Πολλαπλασιάστε 1 και 2 για να λάβετε 2.
x^{2}+x-2=0
Αφαιρέστε 2 και από τις δύο πλευρές.
a+b=1 ab=-2
Για να λύσετε την εξίσωση, παραγοντοποιήστε x^{2}+x-2 χρησιμοποιώντας τον τύπο x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
a=-1 b=2
Εφόσον το ab είναι αρνητικό, οι a και b έχουν τα αντίθετο σήματα. Δεδομένου ότι a+b είναι θετικός, ο θετικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από τη αρνητική. Το μόνο τέτοιο ζεύγος είναι η λύση του συστήματος.
\left(x-1\right)\left(x+2\right)
Επανεγγραφή παραγοντοποιηθεί παράστασης \left(x+a\right)\left(x+b\right) χρησιμοποιώντας τις τιμές που έχουν ληφθεί.
x=1 x=-2
Για να βρείτε λύσεις εξίσωσης, να λύσετε x-1=0 και x+2=0.
x^{2}+x=1\times 2
Πολλαπλασιάστε και τις δύο πλευρές με 2, το αντίστροφο του \frac{1}{2}.
x^{2}+x=2
Πολλαπλασιάστε 1 και 2 για να λάβετε 2.
x^{2}+x-2=0
Αφαιρέστε 2 και από τις δύο πλευρές.
a+b=1 ab=1\left(-2\right)=-2
Για να λύσετε την εξίσωση, παραγοντοποιήστε την αριστερή πλευρά με ομαδοποίηση. Αρχικά, η αριστερή πλευρά πρέπει να γραφτεί ξανά ως x^{2}+ax+bx-2. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
a=-1 b=2
Εφόσον το ab είναι αρνητικό, οι a και b έχουν τα αντίθετο σήματα. Δεδομένου ότι a+b είναι θετικός, ο θετικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από τη αρνητική. Το μόνο τέτοιο ζεύγος είναι η λύση του συστήματος.
\left(x^{2}-x\right)+\left(2x-2\right)
Γράψτε πάλι το x^{2}+x-2 ως \left(x^{2}-x\right)+\left(2x-2\right).
x\left(x-1\right)+2\left(x-1\right)
Παραγοντοποιήστε x στο πρώτο και στο 2 της δεύτερης ομάδας.
\left(x-1\right)\left(x+2\right)
Παραγοντοποιήστε τον κοινό όρο x-1 χρησιμοποιώντας επιμεριστική ιδιότητα.
x=1 x=-2
Για να βρείτε λύσεις εξίσωσης, να λύσετε x-1=0 και x+2=0.
x^{2}+x=1\times 2
Πολλαπλασιάστε και τις δύο πλευρές με 2, το αντίστροφο του \frac{1}{2}.
x^{2}+x=2
Πολλαπλασιάστε 1 και 2 για να λάβετε 2.
x^{2}+x-2=0
Αφαιρέστε 2 και από τις δύο πλευρές.
x=\frac{-1±\sqrt{1^{2}-4\left(-2\right)}}{2}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 1, το b με 1 και το c με -2 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-2\right)}}{2}
Υψώστε το 1 στο τετράγωνο.
x=\frac{-1±\sqrt{1+8}}{2}
Πολλαπλασιάστε το -4 επί -2.
x=\frac{-1±\sqrt{9}}{2}
Προσθέστε το 1 και το 8.
x=\frac{-1±3}{2}
Λάβετε την τετραγωνική ρίζα του 9.
x=\frac{2}{2}
Λύστε τώρα την εξίσωση x=\frac{-1±3}{2} όταν το ± είναι συν. Προσθέστε το -1 και το 3.
x=1
Διαιρέστε το 2 με το 2.
x=-\frac{4}{2}
Λύστε τώρα την εξίσωση x=\frac{-1±3}{2} όταν το ± είναι μείον. Αφαιρέστε 3 από -1.
x=-2
Διαιρέστε το -4 με το 2.
x=1 x=-2
Η εξίσωση έχει πλέον λυθεί.
x^{2}+x=1\times 2
Πολλαπλασιάστε και τις δύο πλευρές με 2, το αντίστροφο του \frac{1}{2}.
x^{2}+x=2
Πολλαπλασιάστε 1 και 2 για να λάβετε 2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=2+\left(\frac{1}{2}\right)^{2}
Διαιρέστε το 1, τον συντελεστή του όρου x, με το 2 για να λάβετε \frac{1}{2}. Στη συνέχεια, προσθέστε το τετράγωνο του \frac{1}{2} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}+x+\frac{1}{4}=2+\frac{1}{4}
Υψώστε το \frac{1}{2} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}+x+\frac{1}{4}=\frac{9}{4}
Προσθέστε το 2 και το \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{9}{4}
Παραγον x^{2}+x+\frac{1}{4}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x+\frac{1}{2}=\frac{3}{2} x+\frac{1}{2}=-\frac{3}{2}
Απλοποιήστε.
x=1 x=-2
Αφαιρέστε \frac{1}{2} και από τις δύο πλευρές της εξίσωσης.