Υπολογισμός
\frac{15}{x^{2}+x+3}
Ανάπτυξη
\frac{30}{2x^{2}+2x+6}
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{\frac{x+1}{x-5}-\frac{x+6}{x}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Αφαιρέστε 5 από 6 για να λάβετε 1.
\frac{\frac{\left(x+1\right)x}{x\left(x-5\right)}-\frac{\left(x+6\right)\left(x-5\right)}{x\left(x-5\right)}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των x-5 και x είναι x\left(x-5\right). Πολλαπλασιάστε το \frac{x+1}{x-5} επί \frac{x}{x}. Πολλαπλασιάστε το \frac{x+6}{x} επί \frac{x-5}{x-5}.
\frac{\frac{\left(x+1\right)x-\left(x+6\right)\left(x-5\right)}{x\left(x-5\right)}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Από τη στιγμή που οι αριθμοί \frac{\left(x+1\right)x}{x\left(x-5\right)} και \frac{\left(x+6\right)\left(x-5\right)}{x\left(x-5\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{\frac{x^{2}+x-x^{2}+5x-6x+30}{x\left(x-5\right)}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Κάντε τους πολλαπλασιασμούς στο \left(x+1\right)x-\left(x+6\right)\left(x-5\right).
\frac{\frac{30}{x\left(x-5\right)}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Συνδυάστε παρόμοιους όρους στο x^{2}+x-x^{2}+5x-6x+30.
\frac{\frac{30}{x\left(x-5\right)}}{1+\frac{x+1}{x-5}\times \frac{x+6}{x}}
Αφαιρέστε 5 από 6 για να λάβετε 1.
\frac{\frac{30}{x\left(x-5\right)}}{1+\frac{\left(x+1\right)\left(x+6\right)}{\left(x-5\right)x}}
Πολλαπλασιάστε το \frac{x+1}{x-5} επί \frac{x+6}{x} πολλαπλασιάζοντας τον αριθμητή επί τον αριθμητή και τον παρονομαστή επί τον παρονομαστή.
\frac{\frac{30}{x\left(x-5\right)}}{\frac{\left(x-5\right)x}{\left(x-5\right)x}+\frac{\left(x+1\right)\left(x+6\right)}{\left(x-5\right)x}}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το 1 επί \frac{\left(x-5\right)x}{\left(x-5\right)x}.
\frac{\frac{30}{x\left(x-5\right)}}{\frac{\left(x-5\right)x+\left(x+1\right)\left(x+6\right)}{\left(x-5\right)x}}
Από τη στιγμή που οι αριθμοί \frac{\left(x-5\right)x}{\left(x-5\right)x} και \frac{\left(x+1\right)\left(x+6\right)}{\left(x-5\right)x} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{\frac{30}{x\left(x-5\right)}}{\frac{x^{2}-5x+x^{2}+6x+x+6}{\left(x-5\right)x}}
Κάντε τους πολλαπλασιασμούς στο \left(x-5\right)x+\left(x+1\right)\left(x+6\right).
\frac{\frac{30}{x\left(x-5\right)}}{\frac{2x^{2}+2x+6}{\left(x-5\right)x}}
Συνδυάστε παρόμοιους όρους στο x^{2}-5x+x^{2}+6x+x+6.
\frac{30\left(x-5\right)x}{x\left(x-5\right)\left(2x^{2}+2x+6\right)}
Διαιρέστε το \frac{30}{x\left(x-5\right)} με το \frac{2x^{2}+2x+6}{\left(x-5\right)x}, πολλαπλασιάζοντας το \frac{30}{x\left(x-5\right)} με τον αντίστροφο του \frac{2x^{2}+2x+6}{\left(x-5\right)x}.
\frac{30}{2x^{2}+2x+6}
Απαλείψτε το x\left(x-5\right) στον αριθμητή και παρονομαστή.
\frac{\frac{x+1}{x-5}-\frac{x+6}{x}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Αφαιρέστε 5 από 6 για να λάβετε 1.
\frac{\frac{\left(x+1\right)x}{x\left(x-5\right)}-\frac{\left(x+6\right)\left(x-5\right)}{x\left(x-5\right)}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των x-5 και x είναι x\left(x-5\right). Πολλαπλασιάστε το \frac{x+1}{x-5} επί \frac{x}{x}. Πολλαπλασιάστε το \frac{x+6}{x} επί \frac{x-5}{x-5}.
\frac{\frac{\left(x+1\right)x-\left(x+6\right)\left(x-5\right)}{x\left(x-5\right)}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Από τη στιγμή που οι αριθμοί \frac{\left(x+1\right)x}{x\left(x-5\right)} και \frac{\left(x+6\right)\left(x-5\right)}{x\left(x-5\right)} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{\frac{x^{2}+x-x^{2}+5x-6x+30}{x\left(x-5\right)}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Κάντε τους πολλαπλασιασμούς στο \left(x+1\right)x-\left(x+6\right)\left(x-5\right).
\frac{\frac{30}{x\left(x-5\right)}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Συνδυάστε παρόμοιους όρους στο x^{2}+x-x^{2}+5x-6x+30.
\frac{\frac{30}{x\left(x-5\right)}}{1+\frac{x+1}{x-5}\times \frac{x+6}{x}}
Αφαιρέστε 5 από 6 για να λάβετε 1.
\frac{\frac{30}{x\left(x-5\right)}}{1+\frac{\left(x+1\right)\left(x+6\right)}{\left(x-5\right)x}}
Πολλαπλασιάστε το \frac{x+1}{x-5} επί \frac{x+6}{x} πολλαπλασιάζοντας τον αριθμητή επί τον αριθμητή και τον παρονομαστή επί τον παρονομαστή.
\frac{\frac{30}{x\left(x-5\right)}}{\frac{\left(x-5\right)x}{\left(x-5\right)x}+\frac{\left(x+1\right)\left(x+6\right)}{\left(x-5\right)x}}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το 1 επί \frac{\left(x-5\right)x}{\left(x-5\right)x}.
\frac{\frac{30}{x\left(x-5\right)}}{\frac{\left(x-5\right)x+\left(x+1\right)\left(x+6\right)}{\left(x-5\right)x}}
Από τη στιγμή που οι αριθμοί \frac{\left(x-5\right)x}{\left(x-5\right)x} και \frac{\left(x+1\right)\left(x+6\right)}{\left(x-5\right)x} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{\frac{30}{x\left(x-5\right)}}{\frac{x^{2}-5x+x^{2}+6x+x+6}{\left(x-5\right)x}}
Κάντε τους πολλαπλασιασμούς στο \left(x-5\right)x+\left(x+1\right)\left(x+6\right).
\frac{\frac{30}{x\left(x-5\right)}}{\frac{2x^{2}+2x+6}{\left(x-5\right)x}}
Συνδυάστε παρόμοιους όρους στο x^{2}-5x+x^{2}+6x+x+6.
\frac{30\left(x-5\right)x}{x\left(x-5\right)\left(2x^{2}+2x+6\right)}
Διαιρέστε το \frac{30}{x\left(x-5\right)} με το \frac{2x^{2}+2x+6}{\left(x-5\right)x}, πολλαπλασιάζοντας το \frac{30}{x\left(x-5\right)} με τον αντίστροφο του \frac{2x^{2}+2x+6}{\left(x-5\right)x}.
\frac{30}{2x^{2}+2x+6}
Απαλείψτε το x\left(x-5\right) στον αριθμητή και παρονομαστή.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}