Υπολογισμός
\frac{16384\sqrt[3]{724}}{9}\approx 16346,456330386
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{\sqrt[5]{18014398509481984\times 128^{3}}\sqrt[3]{\frac{724}{27}}}{\sqrt[5]{32\times 243}}
Υπολογίστε το 64στη δύναμη του 9 και λάβετε 18014398509481984.
\frac{\sqrt[5]{18014398509481984\times 2097152}\sqrt[3]{\frac{724}{27}}}{\sqrt[5]{32\times 243}}
Υπολογίστε το 128στη δύναμη του 3 και λάβετε 2097152.
\frac{\sqrt[5]{37778931862957161709568}\sqrt[3]{\frac{724}{27}}}{\sqrt[5]{32\times 243}}
Πολλαπλασιάστε 18014398509481984 και 2097152 για να λάβετε 37778931862957161709568.
\frac{32768\sqrt[3]{\frac{724}{27}}}{\sqrt[5]{32\times 243}}
Υπολογίστε το \sqrt[5]{37778931862957161709568} και λάβετε 32768.
\frac{32768\sqrt[3]{\frac{724}{27}}}{\sqrt[5]{7776}}
Πολλαπλασιάστε 32 και 243 για να λάβετε 7776.
\frac{32768\sqrt[3]{\frac{724}{27}}}{6}
Υπολογίστε το \sqrt[5]{7776} και λάβετε 6.
\frac{16384}{3}\sqrt[3]{\frac{724}{27}}
Διαιρέστε το 32768\sqrt[3]{\frac{724}{27}} με το 6 για να λάβετε \frac{16384}{3}\sqrt[3]{\frac{724}{27}}.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}