Mετάβαση στο κυρίως περιεχόμενο
Υπολογισμός
Tick mark Image
Ανάπτυξη
Tick mark Image

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\frac{\frac{mm}{2m}+\frac{8m+15}{2m}}{\frac{1}{2}+\frac{5}{2m}}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των 2 και 2m είναι 2m. Πολλαπλασιάστε το \frac{m}{2} επί \frac{m}{m}.
\frac{\frac{mm+8m+15}{2m}}{\frac{1}{2}+\frac{5}{2m}}
Από τη στιγμή που οι αριθμοί \frac{mm}{2m} και \frac{8m+15}{2m} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{\frac{m^{2}+8m+15}{2m}}{\frac{1}{2}+\frac{5}{2m}}
Κάντε τους πολλαπλασιασμούς στο mm+8m+15.
\frac{\frac{m^{2}+8m+15}{2m}}{\frac{m}{2m}+\frac{5}{2m}}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των 2 και 2m είναι 2m. Πολλαπλασιάστε το \frac{1}{2} επί \frac{m}{m}.
\frac{\frac{m^{2}+8m+15}{2m}}{\frac{m+5}{2m}}
Από τη στιγμή που οι αριθμοί \frac{m}{2m} και \frac{5}{2m} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{\left(m^{2}+8m+15\right)\times 2m}{2m\left(m+5\right)}
Διαιρέστε το \frac{m^{2}+8m+15}{2m} με το \frac{m+5}{2m}, πολλαπλασιάζοντας το \frac{m^{2}+8m+15}{2m} με τον αντίστροφο του \frac{m+5}{2m}.
\frac{m^{2}+8m+15}{m+5}
Απαλείψτε το 2m στον αριθμητή και παρονομαστή.
\frac{\left(m+3\right)\left(m+5\right)}{m+5}
Παραγοντοποιήστε τις παραστάσεις που δεν έχουν ήδη παραγοντοποιηθεί.
m+3
Απαλείψτε το m+5 στον αριθμητή και παρονομαστή.
\frac{\frac{mm}{2m}+\frac{8m+15}{2m}}{\frac{1}{2}+\frac{5}{2m}}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των 2 και 2m είναι 2m. Πολλαπλασιάστε το \frac{m}{2} επί \frac{m}{m}.
\frac{\frac{mm+8m+15}{2m}}{\frac{1}{2}+\frac{5}{2m}}
Από τη στιγμή που οι αριθμοί \frac{mm}{2m} και \frac{8m+15}{2m} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{\frac{m^{2}+8m+15}{2m}}{\frac{1}{2}+\frac{5}{2m}}
Κάντε τους πολλαπλασιασμούς στο mm+8m+15.
\frac{\frac{m^{2}+8m+15}{2m}}{\frac{m}{2m}+\frac{5}{2m}}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Το ελάχιστο κοινό πολλαπλάσιο των 2 και 2m είναι 2m. Πολλαπλασιάστε το \frac{1}{2} επί \frac{m}{m}.
\frac{\frac{m^{2}+8m+15}{2m}}{\frac{m+5}{2m}}
Από τη στιγμή που οι αριθμοί \frac{m}{2m} και \frac{5}{2m} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{\left(m^{2}+8m+15\right)\times 2m}{2m\left(m+5\right)}
Διαιρέστε το \frac{m^{2}+8m+15}{2m} με το \frac{m+5}{2m}, πολλαπλασιάζοντας το \frac{m^{2}+8m+15}{2m} με τον αντίστροφο του \frac{m+5}{2m}.
\frac{m^{2}+8m+15}{m+5}
Απαλείψτε το 2m στον αριθμητή και παρονομαστή.
\frac{\left(m+3\right)\left(m+5\right)}{m+5}
Παραγοντοποιήστε τις παραστάσεις που δεν έχουν ήδη παραγοντοποιηθεί.
m+3
Απαλείψτε το m+5 στον αριθμητή και παρονομαστή.