Υπολογισμός
\frac{6\left(x-2\right)\left(7x+47\right)}{\left(x+3\right)\left(x+26\right)}
Ανάπτυξη
\frac{6\left(7x^{2}+33x-94\right)}{x^{2}+29x+78}
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{15-\left(\frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1}-\frac{x^{4}+1}{x^{2}+1}\right)\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το x^{4} επί \frac{x^{2}+1}{x^{2}+1}.
\frac{15-\frac{x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right)}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Από τη στιγμή που οι αριθμοί \frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1} και \frac{x^{4}+1}{x^{2}+1} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{15-\frac{x^{6}+x^{4}-x^{4}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Κάντε τους πολλαπλασιασμούς στο x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right).
\frac{15-\frac{x^{6}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Συνδυάστε παρόμοιους όρους στο x^{6}+x^{4}-x^{4}-1.
\frac{15-\frac{\left(x^{6}-1\right)\left(x^{2}+1\right)\left(x-4\right)}{\left(x^{2}+1\right)\left(x^{7}+6x^{6}-x-6\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Πολλαπλασιάστε το \frac{x^{6}-1}{x^{2}+1} επί \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6} πολλαπλασιάζοντας τον αριθμητή επί τον αριθμητή και τον παρονομαστή επί τον παρονομαστή.
\frac{15-\frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Απαλείψτε το x^{2}+1 στον αριθμητή και παρονομαστή.
\frac{15-\frac{\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+6\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Παραγοντοποιήστε τις παραστάσεις που δεν έχουν ήδη παραγοντοποιηθεί στο \frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}.
\frac{15-\frac{x-4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Απαλείψτε το \left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right) στον αριθμητή και παρονομαστή.
\frac{\frac{15\left(x+6\right)}{x+6}-\frac{x-4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το 15 επί \frac{x+6}{x+6}.
\frac{\frac{15\left(x+6\right)-\left(x-4\right)}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Από τη στιγμή που οι αριθμοί \frac{15\left(x+6\right)}{x+6} και \frac{x-4}{x+6} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{\frac{15x+90-x+4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Κάντε τους πολλαπλασιασμούς στο 15\left(x+6\right)-\left(x-4\right).
\frac{\frac{14x+94}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Συνδυάστε παρόμοιους όρους στο 15x+90-x+4.
\frac{\left(14x+94\right)\left(3x^{2}+12x-36\right)}{\left(x+6\right)\left(x^{2}+29x+78\right)}
Διαιρέστε το \frac{14x+94}{x+6} με το \frac{x^{2}+29x+78}{3x^{2}+12x-36}, πολλαπλασιάζοντας το \frac{14x+94}{x+6} με τον αντίστροφο του \frac{x^{2}+29x+78}{3x^{2}+12x-36}.
\frac{2\times 3\left(x-2\right)\left(x+6\right)\left(7x+47\right)}{\left(x+3\right)\left(x+6\right)\left(x+26\right)}
Παραγοντοποιήστε τις παραστάσεις που δεν έχουν ήδη παραγοντοποιηθεί.
\frac{2\times 3\left(x-2\right)\left(7x+47\right)}{\left(x+3\right)\left(x+26\right)}
Απαλείψτε το x+6 στον αριθμητή και παρονομαστή.
\frac{42x^{2}+198x-564}{x^{2}+29x+78}
Αναπτύξτε την παράσταση.
\frac{15-\left(\frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1}-\frac{x^{4}+1}{x^{2}+1}\right)\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το x^{4} επί \frac{x^{2}+1}{x^{2}+1}.
\frac{15-\frac{x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right)}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Από τη στιγμή που οι αριθμοί \frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1} και \frac{x^{4}+1}{x^{2}+1} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{15-\frac{x^{6}+x^{4}-x^{4}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Κάντε τους πολλαπλασιασμούς στο x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right).
\frac{15-\frac{x^{6}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Συνδυάστε παρόμοιους όρους στο x^{6}+x^{4}-x^{4}-1.
\frac{15-\frac{\left(x^{6}-1\right)\left(x^{2}+1\right)\left(x-4\right)}{\left(x^{2}+1\right)\left(x^{7}+6x^{6}-x-6\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Πολλαπλασιάστε το \frac{x^{6}-1}{x^{2}+1} επί \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6} πολλαπλασιάζοντας τον αριθμητή επί τον αριθμητή και τον παρονομαστή επί τον παρονομαστή.
\frac{15-\frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Απαλείψτε το x^{2}+1 στον αριθμητή και παρονομαστή.
\frac{15-\frac{\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+6\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Παραγοντοποιήστε τις παραστάσεις που δεν έχουν ήδη παραγοντοποιηθεί στο \frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}.
\frac{15-\frac{x-4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Απαλείψτε το \left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right) στον αριθμητή και παρονομαστή.
\frac{\frac{15\left(x+6\right)}{x+6}-\frac{x-4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το 15 επί \frac{x+6}{x+6}.
\frac{\frac{15\left(x+6\right)-\left(x-4\right)}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Από τη στιγμή που οι αριθμοί \frac{15\left(x+6\right)}{x+6} και \frac{x-4}{x+6} έχουν τον ίδιο παρονομαστή, μπορείτε να τους αφαιρέσετε αφαιρώντας τους αριθμητές τους.
\frac{\frac{15x+90-x+4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Κάντε τους πολλαπλασιασμούς στο 15\left(x+6\right)-\left(x-4\right).
\frac{\frac{14x+94}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Συνδυάστε παρόμοιους όρους στο 15x+90-x+4.
\frac{\left(14x+94\right)\left(3x^{2}+12x-36\right)}{\left(x+6\right)\left(x^{2}+29x+78\right)}
Διαιρέστε το \frac{14x+94}{x+6} με το \frac{x^{2}+29x+78}{3x^{2}+12x-36}, πολλαπλασιάζοντας το \frac{14x+94}{x+6} με τον αντίστροφο του \frac{x^{2}+29x+78}{3x^{2}+12x-36}.
\frac{2\times 3\left(x-2\right)\left(x+6\right)\left(7x+47\right)}{\left(x+3\right)\left(x+6\right)\left(x+26\right)}
Παραγοντοποιήστε τις παραστάσεις που δεν έχουν ήδη παραγοντοποιηθεί.
\frac{2\times 3\left(x-2\right)\left(7x+47\right)}{\left(x+3\right)\left(x+26\right)}
Απαλείψτε το x+6 στον αριθμητή και παρονομαστή.
\frac{42x^{2}+198x-564}{x^{2}+29x+78}
Αναπτύξτε την παράσταση.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}