Υπολογισμός
-7xy^{2}
Ανάπτυξη
-7xy^{2}
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{x^{2}y^{2}x-2x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Αναπτύξτε το \left(xy\right)^{2}.
\frac{x^{3}y^{2}-2x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Για να πολλαπλασιάσετε δυνάμεις της ίδιας βάσης, προσθέστε τους εκθέτες. Προσθέστε τον αριθμό 2 και τον αριθμό 1 για να λάβετε τον αριθμό 3.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Συνδυάστε το x^{3}y^{2} και το -2x^{3}y^{2} για να λάβετε -x^{3}y^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}\right)^{2}x^{2}y^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Αναπτύξτε το \left(-\frac{1}{2}xy\right)^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\frac{1}{4}x^{2}y^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Υπολογίστε το -\frac{1}{2}στη δύναμη του 2 και λάβετε \frac{1}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{2}y^{3}}{\frac{1}{4}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Απαλείψτε το x^{2}y^{2} στον αριθμητή και παρονομαστή.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Διαιρέστε το -3x^{2}y^{3} με το \frac{1}{4}, πολλαπλασιάζοντας το -3x^{2}y^{3} με τον αντίστροφο του \frac{1}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{2^{2}x^{2}y^{2}}+2xy}
Αναπτύξτε το \left(2xy\right)^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{4x^{2}y^{2}}+2xy}
Υπολογίστε το 2στη δύναμη του 2 και λάβετε 4.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy}{4}+2xy}
Απαλείψτε το x^{2}y^{2} στον αριθμητή και παρονομαστή.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy}{4}+\frac{4\times 2xy}{4}}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το 2xy επί \frac{4}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy+4\times 2xy}{4}}
Από τη στιγμή που οι αριθμοί \frac{-3xy}{4} και \frac{4\times 2xy}{4} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy+8xy}{4}}
Κάντε τους πολλαπλασιασμούς στο -3xy+4\times 2xy.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{5xy}{4}}
Συνδυάστε παρόμοιους όρους στο -3xy+8xy.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-12x^{2}y^{3}}{\frac{5xy}{4}}
Πολλαπλασιάστε -3 και 4 για να λάβετε -12.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-10x^{2}y^{3}}{\frac{5xy}{4}}
Συνδυάστε το 2x^{2}y^{3} και το -12x^{2}y^{3} για να λάβετε -10x^{2}y^{3}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-10x^{2}y^{3}\times 4}{5xy}
Διαιρέστε το -10x^{2}y^{3} με το \frac{5xy}{4}, πολλαπλασιάζοντας το -10x^{2}y^{3} με τον αντίστροφο του \frac{5xy}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}-2\times 4xy^{2}
Απαλείψτε το 5xy στον αριθμητή και παρονομαστή.
\frac{-x^{3}y^{2}}{-x^{2}}-8xy^{2}
Πολλαπλασιάστε -2 και 4 για να λάβετε -8.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-8xy^{2}\left(-1\right)x^{2}}{-x^{2}}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το -8xy^{2} επί \frac{-x^{2}}{-x^{2}}.
\frac{-x^{3}y^{2}-8xy^{2}\left(-1\right)x^{2}}{-x^{2}}
Από τη στιγμή που οι αριθμοί \frac{-x^{3}y^{2}}{-x^{2}} και \frac{-8xy^{2}\left(-1\right)x^{2}}{-x^{2}} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{-x^{3}y^{2}+8x^{3}y^{2}}{-x^{2}}
Κάντε τους πολλαπλασιασμούς στο -x^{3}y^{2}-8xy^{2}\left(-1\right)x^{2}.
\frac{7x^{3}y^{2}}{-x^{2}}
Συνδυάστε παρόμοιους όρους στο -x^{3}y^{2}+8x^{3}y^{2}.
\frac{7xy^{2}}{-1}
Απαλείψτε το x^{2} στον αριθμητή και παρονομαστή.
\frac{x^{2}y^{2}x-2x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Αναπτύξτε το \left(xy\right)^{2}.
\frac{x^{3}y^{2}-2x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Για να πολλαπλασιάσετε δυνάμεις της ίδιας βάσης, προσθέστε τους εκθέτες. Προσθέστε τον αριθμό 2 και τον αριθμό 1 για να λάβετε τον αριθμό 3.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}xy\right)^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Συνδυάστε το x^{3}y^{2} και το -2x^{3}y^{2} για να λάβετε -x^{3}y^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\left(-\frac{1}{2}\right)^{2}x^{2}y^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Αναπτύξτε το \left(-\frac{1}{2}xy\right)^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{4}y^{5}}{\frac{1}{4}x^{2}y^{2}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Υπολογίστε το -\frac{1}{2}στη δύναμη του 2 και λάβετε \frac{1}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}+\frac{-3x^{2}y^{3}}{\frac{1}{4}}}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Απαλείψτε το x^{2}y^{2} στον αριθμητή και παρονομαστή.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{\left(2xy\right)^{2}}+2xy}
Διαιρέστε το -3x^{2}y^{3} με το \frac{1}{4}, πολλαπλασιάζοντας το -3x^{2}y^{3} με τον αντίστροφο του \frac{1}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{2^{2}x^{2}y^{2}}+2xy}
Αναπτύξτε το \left(2xy\right)^{2}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3x^{3}y^{3}}{4x^{2}y^{2}}+2xy}
Υπολογίστε το 2στη δύναμη του 2 και λάβετε 4.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy}{4}+2xy}
Απαλείψτε το x^{2}y^{2} στον αριθμητή και παρονομαστή.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy}{4}+\frac{4\times 2xy}{4}}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το 2xy επί \frac{4}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy+4\times 2xy}{4}}
Από τη στιγμή που οι αριθμοί \frac{-3xy}{4} και \frac{4\times 2xy}{4} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{-3xy+8xy}{4}}
Κάντε τους πολλαπλασιασμούς στο -3xy+4\times 2xy.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-3x^{2}y^{3}\times 4}{\frac{5xy}{4}}
Συνδυάστε παρόμοιους όρους στο -3xy+8xy.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{2x^{2}y^{3}-12x^{2}y^{3}}{\frac{5xy}{4}}
Πολλαπλασιάστε -3 και 4 για να λάβετε -12.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-10x^{2}y^{3}}{\frac{5xy}{4}}
Συνδυάστε το 2x^{2}y^{3} και το -12x^{2}y^{3} για να λάβετε -10x^{2}y^{3}.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-10x^{2}y^{3}\times 4}{5xy}
Διαιρέστε το -10x^{2}y^{3} με το \frac{5xy}{4}, πολλαπλασιάζοντας το -10x^{2}y^{3} με τον αντίστροφο του \frac{5xy}{4}.
\frac{-x^{3}y^{2}}{-x^{2}}-2\times 4xy^{2}
Απαλείψτε το 5xy στον αριθμητή και παρονομαστή.
\frac{-x^{3}y^{2}}{-x^{2}}-8xy^{2}
Πολλαπλασιάστε -2 και 4 για να λάβετε -8.
\frac{-x^{3}y^{2}}{-x^{2}}+\frac{-8xy^{2}\left(-1\right)x^{2}}{-x^{2}}
Για να προσθέσετε ή να αφαιρέσετε παραστάσεις, αναπτύξτε τις ώστε οι παρονομαστές τους να είναι ίδιοι. Πολλαπλασιάστε το -8xy^{2} επί \frac{-x^{2}}{-x^{2}}.
\frac{-x^{3}y^{2}-8xy^{2}\left(-1\right)x^{2}}{-x^{2}}
Από τη στιγμή που οι αριθμοί \frac{-x^{3}y^{2}}{-x^{2}} και \frac{-8xy^{2}\left(-1\right)x^{2}}{-x^{2}} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
\frac{-x^{3}y^{2}+8x^{3}y^{2}}{-x^{2}}
Κάντε τους πολλαπλασιασμούς στο -x^{3}y^{2}-8xy^{2}\left(-1\right)x^{2}.
\frac{7x^{3}y^{2}}{-x^{2}}
Συνδυάστε παρόμοιους όρους στο -x^{3}y^{2}+8x^{3}y^{2}.
\frac{7xy^{2}}{-1}
Απαλείψτε το x^{2} στον αριθμητή και παρονομαστή.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}