Υπολογισμός
\frac{6052246093750000000Nk^{3}}{3}
Ανάπτυξη
\frac{6052246093750000000Nk^{3}}{3}
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{67\times 10^{13}Nm^{2}kg^{-2}\times 6kg\times 74\times 10^{22}kg}{\left(384\times 10^{8}m\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις της ίδιας βάσης, προσθέστε τους εκθέτες. Προσθέστε τον αριθμό -11 και τον αριθμό 24 για να λάβετε τον αριθμό 13.
\frac{67\times 10^{35}Nm^{2}kg^{-2}\times 6kg\times 74kg}{\left(384\times 10^{8}m\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις της ίδιας βάσης, προσθέστε τους εκθέτες. Προσθέστε τον αριθμό 13 και τον αριθμό 22 για να λάβετε τον αριθμό 35.
\frac{67\times 10^{35}Nm^{2}k^{2}g^{-2}\times 6g\times 74kg}{\left(384\times 10^{8}m\right)^{2}}
Πολλαπλασιάστε k και k για να λάβετε k^{2}.
\frac{67\times 10^{35}Nm^{2}k^{3}g^{-2}\times 6g\times 74g}{\left(384\times 10^{8}m\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις της ίδιας βάσης, προσθέστε τους εκθέτες. Προσθέστε τον αριθμό 2 και τον αριθμό 1 για να λάβετε τον αριθμό 3.
\frac{67\times 10^{35}Nm^{2}k^{3}g^{-1}\times 6\times 74g}{\left(384\times 10^{8}m\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις της ίδιας βάσης, προσθέστε τους εκθέτες. Προσθέστε τον αριθμό -2 και τον αριθμό 1 για να λάβετε τον αριθμό -1.
\frac{67\times 10^{35}Nm^{2}k^{3}\times 6\times 74}{\left(384\times 10^{8}m\right)^{2}}
Πολλαπλασιάστε g^{-1} και g για να λάβετε 1.
\frac{67\times 100000000000000000000000000000000000Nm^{2}k^{3}\times 6\times 74}{\left(384\times 10^{8}m\right)^{2}}
Υπολογίστε το 10στη δύναμη του 35 και λάβετε 100000000000000000000000000000000000.
\frac{6700000000000000000000000000000000000Nm^{2}k^{3}\times 6\times 74}{\left(384\times 10^{8}m\right)^{2}}
Πολλαπλασιάστε 67 και 100000000000000000000000000000000000 για να λάβετε 6700000000000000000000000000000000000.
\frac{40200000000000000000000000000000000000Nm^{2}k^{3}\times 74}{\left(384\times 10^{8}m\right)^{2}}
Πολλαπλασιάστε 6700000000000000000000000000000000000 και 6 για να λάβετε 40200000000000000000000000000000000000.
\frac{2974800000000000000000000000000000000000Nm^{2}k^{3}}{\left(384\times 10^{8}m\right)^{2}}
Πολλαπλασιάστε 40200000000000000000000000000000000000 και 74 για να λάβετε 2974800000000000000000000000000000000000.
\frac{2974800000000000000000000000000000000000Nm^{2}k^{3}}{\left(384\times 100000000m\right)^{2}}
Υπολογίστε το 10στη δύναμη του 8 και λάβετε 100000000.
\frac{2974800000000000000000000000000000000000Nm^{2}k^{3}}{\left(38400000000m\right)^{2}}
Πολλαπλασιάστε 384 και 100000000 για να λάβετε 38400000000.
\frac{2974800000000000000000000000000000000000Nm^{2}k^{3}}{38400000000^{2}m^{2}}
Αναπτύξτε το \left(38400000000m\right)^{2}.
\frac{2974800000000000000000000000000000000000Nm^{2}k^{3}}{1474560000000000000000m^{2}}
Υπολογίστε το 38400000000στη δύναμη του 2 και λάβετε 1474560000000000000000.
\frac{6052246093750000000Nk^{3}}{3}
Απαλείψτε το 491520000000000000000m^{2} στον αριθμητή και παρονομαστή.
\frac{67\times 10^{13}Nm^{2}kg^{-2}\times 6kg\times 74\times 10^{22}kg}{\left(384\times 10^{8}m\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις της ίδιας βάσης, προσθέστε τους εκθέτες. Προσθέστε τον αριθμό -11 και τον αριθμό 24 για να λάβετε τον αριθμό 13.
\frac{67\times 10^{35}Nm^{2}kg^{-2}\times 6kg\times 74kg}{\left(384\times 10^{8}m\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις της ίδιας βάσης, προσθέστε τους εκθέτες. Προσθέστε τον αριθμό 13 και τον αριθμό 22 για να λάβετε τον αριθμό 35.
\frac{67\times 10^{35}Nm^{2}k^{2}g^{-2}\times 6g\times 74kg}{\left(384\times 10^{8}m\right)^{2}}
Πολλαπλασιάστε k και k για να λάβετε k^{2}.
\frac{67\times 10^{35}Nm^{2}k^{3}g^{-2}\times 6g\times 74g}{\left(384\times 10^{8}m\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις της ίδιας βάσης, προσθέστε τους εκθέτες. Προσθέστε τον αριθμό 2 και τον αριθμό 1 για να λάβετε τον αριθμό 3.
\frac{67\times 10^{35}Nm^{2}k^{3}g^{-1}\times 6\times 74g}{\left(384\times 10^{8}m\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις της ίδιας βάσης, προσθέστε τους εκθέτες. Προσθέστε τον αριθμό -2 και τον αριθμό 1 για να λάβετε τον αριθμό -1.
\frac{67\times 10^{35}Nm^{2}k^{3}\times 6\times 74}{\left(384\times 10^{8}m\right)^{2}}
Πολλαπλασιάστε g^{-1} και g για να λάβετε 1.
\frac{67\times 100000000000000000000000000000000000Nm^{2}k^{3}\times 6\times 74}{\left(384\times 10^{8}m\right)^{2}}
Υπολογίστε το 10στη δύναμη του 35 και λάβετε 100000000000000000000000000000000000.
\frac{6700000000000000000000000000000000000Nm^{2}k^{3}\times 6\times 74}{\left(384\times 10^{8}m\right)^{2}}
Πολλαπλασιάστε 67 και 100000000000000000000000000000000000 για να λάβετε 6700000000000000000000000000000000000.
\frac{40200000000000000000000000000000000000Nm^{2}k^{3}\times 74}{\left(384\times 10^{8}m\right)^{2}}
Πολλαπλασιάστε 6700000000000000000000000000000000000 και 6 για να λάβετε 40200000000000000000000000000000000000.
\frac{2974800000000000000000000000000000000000Nm^{2}k^{3}}{\left(384\times 10^{8}m\right)^{2}}
Πολλαπλασιάστε 40200000000000000000000000000000000000 και 74 για να λάβετε 2974800000000000000000000000000000000000.
\frac{2974800000000000000000000000000000000000Nm^{2}k^{3}}{\left(384\times 100000000m\right)^{2}}
Υπολογίστε το 10στη δύναμη του 8 και λάβετε 100000000.
\frac{2974800000000000000000000000000000000000Nm^{2}k^{3}}{\left(38400000000m\right)^{2}}
Πολλαπλασιάστε 384 και 100000000 για να λάβετε 38400000000.
\frac{2974800000000000000000000000000000000000Nm^{2}k^{3}}{38400000000^{2}m^{2}}
Αναπτύξτε το \left(38400000000m\right)^{2}.
\frac{2974800000000000000000000000000000000000Nm^{2}k^{3}}{1474560000000000000000m^{2}}
Υπολογίστε το 38400000000στη δύναμη του 2 και λάβετε 1474560000000000000000.
\frac{6052246093750000000Nk^{3}}{3}
Απαλείψτε το 491520000000000000000m^{2} στον αριθμητή και παρονομαστή.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}