Nach x auflösen
x=\frac{\left(y+3\right)^{2}-588}{196}
\frac{y+3}{14}\geq 0
Nach x auflösen (komplexe Lösung)
x=\frac{\left(y+3\right)^{2}-588}{196}
y=-3\text{ or }arg(\frac{y+3}{14})<\pi
Nach y auflösen (komplexe Lösung)
y=14\sqrt{x+3}-3
Nach y auflösen
y=14\sqrt{x+3}-3
x\geq -3
Diagramm
Teilen
In die Zwischenablage kopiert
7\sqrt{4x+12}-3=y
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
7\sqrt{4x+12}=y+3
Auf beiden Seiten 3 addieren.
\frac{7\sqrt{4x+12}}{7}=\frac{y+3}{7}
Dividieren Sie beide Seiten durch 7.
\sqrt{4x+12}=\frac{y+3}{7}
Division durch 7 macht die Multiplikation mit 7 rückgängig.
4x+12=\frac{\left(y+3\right)^{2}}{49}
Erheben Sie beide Seiten der Gleichung zum Quadrat.
4x+12-12=\frac{\left(y+3\right)^{2}}{49}-12
12 von beiden Seiten der Gleichung subtrahieren.
4x=\frac{\left(y+3\right)^{2}}{49}-12
Die Subtraktion von 12 von sich selbst ergibt 0.
\frac{4x}{4}=\frac{\frac{\left(y+3\right)^{2}}{49}-12}{4}
Dividieren Sie beide Seiten durch 4.
x=\frac{\frac{\left(y+3\right)^{2}}{49}-12}{4}
Division durch 4 macht die Multiplikation mit 4 rückgängig.
x=\frac{\left(y+3\right)^{2}}{196}-3
Dividieren Sie \frac{\left(y+3\right)^{2}}{49}-12 durch 4.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}