Nach y auflösen
y=\frac{1+3\sqrt{3}i}{2}\approx 0,5+2,598076211i
y=\frac{-3\sqrt{3}i+1}{2}\approx 0,5-2,598076211i
Teilen
In die Zwischenablage kopiert
y^{2}-y+7=0
Alle Gleichungen der Form ax^{2}+bx+c=0 können mithilfe dieser quadratischen Gleichung gelöst werden: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Die quadratische Gleichung ergibt zwei Lösungen, eine für ± bei Addition und eine bei Subtraktion.
y=\frac{-\left(-1\right)±\sqrt{1-4\times 7}}{2}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch 1, b durch -1 und c durch 7, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-1\right)±\sqrt{1-28}}{2}
Multiplizieren Sie -4 mit 7.
y=\frac{-\left(-1\right)±\sqrt{-27}}{2}
Addieren Sie 1 zu -28.
y=\frac{-\left(-1\right)±3\sqrt{3}i}{2}
Ziehen Sie die Quadratwurzel aus -27.
y=\frac{1±3\sqrt{3}i}{2}
Das Gegenteil von -1 ist 1.
y=\frac{1+3\sqrt{3}i}{2}
Lösen Sie jetzt die Gleichung y=\frac{1±3\sqrt{3}i}{2}, wenn ± positiv ist. Addieren Sie 1 zu 3i\sqrt{3}.
y=\frac{-3\sqrt{3}i+1}{2}
Lösen Sie jetzt die Gleichung y=\frac{1±3\sqrt{3}i}{2}, wenn ± negativ ist. Subtrahieren Sie 3i\sqrt{3} von 1.
y=\frac{1+3\sqrt{3}i}{2} y=\frac{-3\sqrt{3}i+1}{2}
Die Gleichung ist jetzt gelöst.
y^{2}-y+7=0
Quadratische Gleichungen wie diese können durch quadratische Ergänzung gelöst werden. Für die Anwendung der quadratischen Ergänzung muss die Gleichung zuerst in die Form x^{2}+bx=c gebracht werden.
y^{2}-y+7-7=-7
7 von beiden Seiten der Gleichung subtrahieren.
y^{2}-y=-7
Die Subtraktion von 7 von sich selbst ergibt 0.
y^{2}-y+\left(-\frac{1}{2}\right)^{2}=-7+\left(-\frac{1}{2}\right)^{2}
Dividieren Sie -1, den Koeffizienten des Terms x, durch 2, um -\frac{1}{2} zu erhalten. Addieren Sie dann das Quadrat von -\frac{1}{2} zu beiden Seiten der Gleichung. Dieser Schritt macht die linke Seite der Gleichung zu einem perfekten Quadrat.
y^{2}-y+\frac{1}{4}=-7+\frac{1}{4}
Bestimmen Sie das Quadrat von -\frac{1}{2}, indem Sie das Quadrat des Zählers und das Quadrat des Nenners des Bruchs bilden.
y^{2}-y+\frac{1}{4}=-\frac{27}{4}
Addieren Sie -7 zu \frac{1}{4}.
\left(y-\frac{1}{2}\right)^{2}=-\frac{27}{4}
Faktor y^{2}-y+\frac{1}{4}. Wenn x^{2}+bx+c ein perfektes Quadrat ist, kann es im Allgemeinen immer als \left(x+\frac{b}{2}\right)^{2} faktorisieren.
\sqrt{\left(y-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{27}{4}}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
y-\frac{1}{2}=\frac{3\sqrt{3}i}{2} y-\frac{1}{2}=-\frac{3\sqrt{3}i}{2}
Vereinfachen.
y=\frac{1+3\sqrt{3}i}{2} y=\frac{-3\sqrt{3}i+1}{2}
Addieren Sie \frac{1}{2} zu beiden Seiten der Gleichung.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}