Nach x_1 auflösen (komplexe Lösung)
\left\{\begin{matrix}x_{1}=\frac{y}{\left(x-3\right)^{2}}\text{, }&x\neq 3\\x_{1}\in \mathrm{C}\text{, }&y=0\text{ and }x=3\end{matrix}\right,
Nach x_1 auflösen
\left\{\begin{matrix}x_{1}=\frac{y}{\left(x-3\right)^{2}}\text{, }&x\neq 3\\x_{1}\in \mathrm{R}\text{, }&y=0\text{ and }x=3\end{matrix}\right,
Nach x auflösen (komplexe Lösung)
\left\{\begin{matrix}x=3+x_{1}^{-\frac{1}{2}}\sqrt{y}\text{; }x=3-x_{1}^{-\frac{1}{2}}\sqrt{y}\text{, }&x_{1}\neq 0\\x\in \mathrm{C}\text{, }&y=0\text{ and }x_{1}=0\end{matrix}\right,
Nach x auflösen
\left\{\begin{matrix}x=-\sqrt{\frac{y}{x_{1}}}+3\text{; }x=\sqrt{\frac{y}{x_{1}}}+3\text{, }&y\leq 0\text{ and }x_{1}<0\\x=-\sqrt{\frac{y}{x_{1}}}+3\text{; }x=\sqrt{\frac{y}{x_{1}}}+3\text{, }&y\geq 0\text{ and }x_{1}>0\\x\in \mathrm{R}\text{, }&y=0\text{ and }x_{1}=0\end{matrix}\right,
Diagramm
Teilen
In die Zwischenablage kopiert
y=\left(x^{2}-6x+9\right)x_{1}
\left(x-3\right)^{2} mit dem binomischen Lehrsatz "\left(a-b\right)^{2}=a^{2}-2ab+b^{2}" erweitern.
y=x^{2}x_{1}-6xx_{1}+9x_{1}
Verwenden Sie das Distributivgesetz, um x^{2}-6x+9 mit x_{1} zu multiplizieren.
x^{2}x_{1}-6xx_{1}+9x_{1}=y
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
\left(x^{2}-6x+9\right)x_{1}=y
Kombinieren Sie alle Terme, die x_{1} enthalten.
\frac{\left(x^{2}-6x+9\right)x_{1}}{x^{2}-6x+9}=\frac{y}{x^{2}-6x+9}
Dividieren Sie beide Seiten durch x^{2}-6x+9.
x_{1}=\frac{y}{x^{2}-6x+9}
Division durch x^{2}-6x+9 macht die Multiplikation mit x^{2}-6x+9 rückgängig.
x_{1}=\frac{y}{\left(x-3\right)^{2}}
Dividieren Sie y durch x^{2}-6x+9.
y=\left(x^{2}-6x+9\right)x_{1}
\left(x-3\right)^{2} mit dem binomischen Lehrsatz "\left(a-b\right)^{2}=a^{2}-2ab+b^{2}" erweitern.
y=x^{2}x_{1}-6xx_{1}+9x_{1}
Verwenden Sie das Distributivgesetz, um x^{2}-6x+9 mit x_{1} zu multiplizieren.
x^{2}x_{1}-6xx_{1}+9x_{1}=y
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
\left(x^{2}-6x+9\right)x_{1}=y
Kombinieren Sie alle Terme, die x_{1} enthalten.
\frac{\left(x^{2}-6x+9\right)x_{1}}{x^{2}-6x+9}=\frac{y}{x^{2}-6x+9}
Dividieren Sie beide Seiten durch x^{2}-6x+9.
x_{1}=\frac{y}{x^{2}-6x+9}
Division durch x^{2}-6x+9 macht die Multiplikation mit x^{2}-6x+9 rückgängig.
x_{1}=\frac{y}{\left(x-3\right)^{2}}
Dividieren Sie y durch x^{2}-6x+9.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}