Auswerten
6x+17
W.r.t. x differenzieren
6
Diagramm
Teilen
In die Zwischenablage kopiert
4x+8+2x+9
Kombinieren Sie x und 3x, um 4x zu erhalten.
6x+8+9
Kombinieren Sie 4x und 2x, um 6x zu erhalten.
6x+17
Addieren Sie 8 und 9, um 17 zu erhalten.
\frac{\mathrm{d}}{\mathrm{d}x}(4x+8+2x+9)
Kombinieren Sie x und 3x, um 4x zu erhalten.
\frac{\mathrm{d}}{\mathrm{d}x}(6x+8+9)
Kombinieren Sie 4x und 2x, um 6x zu erhalten.
\frac{\mathrm{d}}{\mathrm{d}x}(6x+17)
Addieren Sie 8 und 9, um 17 zu erhalten.
6x^{1-1}
Die Ableitung eines Polynoms ist die Summer der Ableitungen seiner Terme. Die Ableitung eines Terms mit Konstanten ist 0. Die Ableitung von ax^{n} ist nax^{n-1}.
6x^{0}
Subtrahieren Sie 1 von 1.
6\times 1
Für jeden Term t, außer 0, t^{0}=1.
6
Für jeden Term t, t\times 1=t und 1t=t.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}