Direkt zum Inhalt
Faktorisieren
Tick mark Image
Auswerten
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

\left(x+5\right)\left(x^{2}-6x+8\right)
Laut dem Satz über rationale Nullstellen (Rational Root Theorem) haben alle rationalen Nullstellen eines Polynoms die Form \frac{p}{q}, wobei der konstante Ausdruck 40 durch p dividiert wird und der Leitkoeffizient 1 durch q. Eine solche Wurzel ist -5. Faktorisieren Sie das Polynom, indem Sie es durch x+5 teilen.
a+b=-6 ab=1\times 8=8
Betrachten Sie x^{2}-6x+8. Faktorisieren Sie den Ausdruck durch Gruppieren. Zuerst muss der Ausdruck als x^{2}+ax+bx+8 umgeschrieben werden. Um a und b zu finden, stellen Sie ein zu lösendes System auf.
-1,-8 -2,-4
Weil ab positiv ist, haben a und b dasselbe Vorzeichen. Weil a+b negativ ist, sind a und b beide negativ. Alle ganzzahligen Paare auflisten, die das Produkt 8 ergeben.
-1-8=-9 -2-4=-6
Die Summe für jedes Paar berechnen.
a=-4 b=-2
Die Lösung ist das Paar, das die Summe -6 ergibt.
\left(x^{2}-4x\right)+\left(-2x+8\right)
x^{2}-6x+8 als \left(x^{2}-4x\right)+\left(-2x+8\right) umschreiben.
x\left(x-4\right)-2\left(x-4\right)
Klammern Sie x in der ersten und -2 in der zweiten Gruppe aus.
\left(x-4\right)\left(x-2\right)
Klammern Sie den gemeinsamen Term x-4 aus, indem Sie die distributive Eigenschaft verwenden.
\left(x-4\right)\left(x-2\right)\left(x+5\right)
Schreiben Sie den vollständigen, faktorisierten Ausdruck um.