Direkt zum Inhalt
Faktorisieren
Tick mark Image
Auswerten
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

\left(x-10\right)\left(x^{2}-5x+6\right)
Laut dem Satz über rationale Nullstellen (Rational Root Theorem) haben alle rationalen Nullstellen eines Polynoms die Form \frac{p}{q}, wobei der konstante Ausdruck -60 durch p dividiert wird und der Leitkoeffizient 1 durch q. Eine solche Wurzel ist 10. Faktorisieren Sie das Polynom, indem Sie es durch x-10 teilen.
a+b=-5 ab=1\times 6=6
Betrachten Sie x^{2}-5x+6. Faktorisieren Sie den Ausdruck durch Gruppieren. Zuerst muss der Ausdruck als x^{2}+ax+bx+6 umgeschrieben werden. Um a und b zu finden, stellen Sie ein zu lösendes System auf.
-1,-6 -2,-3
Weil ab positiv ist, haben a und b dasselbe Vorzeichen. Weil a+b negativ ist, sind a und b beide negativ. Alle ganzzahligen Paare auflisten, die das Produkt 6 ergeben.
-1-6=-7 -2-3=-5
Die Summe für jedes Paar berechnen.
a=-3 b=-2
Die Lösung ist das Paar, das die Summe -5 ergibt.
\left(x^{2}-3x\right)+\left(-2x+6\right)
x^{2}-5x+6 als \left(x^{2}-3x\right)+\left(-2x+6\right) umschreiben.
x\left(x-3\right)-2\left(x-3\right)
Klammern Sie x in der ersten und -2 in der zweiten Gruppe aus.
\left(x-3\right)\left(x-2\right)
Klammern Sie den gemeinsamen Term x-3 aus, indem Sie die distributive Eigenschaft verwenden.
\left(x-10\right)\left(x-3\right)\left(x-2\right)
Schreiben Sie den vollständigen, faktorisierten Ausdruck um.