Direkt zum Inhalt
Nach x auflösen
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

x^{2}-8x+6x=0
Auf beiden Seiten 6x addieren.
x^{2}-2x=0
Kombinieren Sie -8x und 6x, um -2x zu erhalten.
x\left(x-2\right)=0
Klammern Sie x aus.
x=0 x=2
Um Lösungen für die Gleichungen zu finden, lösen Sie x=0 und x-2=0.
x^{2}-8x+6x=0
Auf beiden Seiten 6x addieren.
x^{2}-2x=0
Kombinieren Sie -8x und 6x, um -2x zu erhalten.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch 1, b durch -2 und c durch 0, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±2}{2}
Ziehen Sie die Quadratwurzel aus \left(-2\right)^{2}.
x=\frac{2±2}{2}
Das Gegenteil von -2 ist 2.
x=\frac{4}{2}
Lösen Sie jetzt die Gleichung x=\frac{2±2}{2}, wenn ± positiv ist. Addieren Sie 2 zu 2.
x=2
Dividieren Sie 4 durch 2.
x=\frac{0}{2}
Lösen Sie jetzt die Gleichung x=\frac{2±2}{2}, wenn ± negativ ist. Subtrahieren Sie 2 von 2.
x=0
Dividieren Sie 0 durch 2.
x=2 x=0
Die Gleichung ist jetzt gelöst.
x^{2}-8x+6x=0
Auf beiden Seiten 6x addieren.
x^{2}-2x=0
Kombinieren Sie -8x und 6x, um -2x zu erhalten.
x^{2}-2x+1=1
Dividieren Sie -2, den Koeffizienten des Terms x, durch 2, um -1 zu erhalten. Addieren Sie dann das Quadrat von -1 zu beiden Seiten der Gleichung. Dieser Schritt macht die linke Seite der Gleichung zu einem perfekten Quadrat.
\left(x-1\right)^{2}=1
Faktor x^{2}-2x+1. Wenn x^{2}+bx+c ein perfektes Quadrat ist, kann es im Allgemeinen immer als \left(x+\frac{b}{2}\right)^{2} faktorisieren.
\sqrt{\left(x-1\right)^{2}}=\sqrt{1}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
x-1=1 x-1=-1
Vereinfachen.
x=2 x=0
Addieren Sie 1 zu beiden Seiten der Gleichung.