x ^ { 2 } ( 1 - x + y ) + x - x d y = 0
Nach d auflösen (komplexe Lösung)
\left\{\begin{matrix}d=\frac{1+x+xy-x^{2}}{y}\text{, }&y\neq 0\\d\in \mathrm{C}\text{, }&x=0\text{ or }\left(x=\frac{1-\sqrt{5}}{2}\text{ and }y=0\right)\text{ or }\left(x=\frac{\sqrt{5}+1}{2}\text{ and }y=0\right)\end{matrix}\right,
Nach d auflösen
\left\{\begin{matrix}d=\frac{1+x+xy-x^{2}}{y}\text{, }&y\neq 0\\d\in \mathrm{R}\text{, }&x=0\text{ or }\left(x=\frac{1-\sqrt{5}}{2}\text{ and }y=0\right)\text{ or }\left(x=\frac{\sqrt{5}+1}{2}\text{ and }y=0\right)\end{matrix}\right,
Nach x auflösen (komplexe Lösung)
x=\frac{\sqrt{y^{2}-4dy+2y+5}+y+1}{2}
x=0
x=\frac{-\sqrt{y^{2}-4dy+2y+5}+y+1}{2}
Nach x auflösen
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x=\frac{-\sqrt{y^{2}-4dy+2y+5}+y+1}{2}\text{; }x=\frac{\sqrt{y^{2}-4dy+2y+5}+y+1}{2}\text{, }&\left(d>\frac{1-\sqrt{5}}{2}\text{ and }d<\frac{\sqrt{5}+1}{2}\right)\text{ or }y\geq \sqrt{\left(1-2d\right)^{2}-5}+2d-1\text{ or }y\leq -\sqrt{\left(1-2d\right)^{2}-5}+2d-1\text{ or }\left(d\geq \frac{1-\sqrt{5}}{2}\text{ and }d\leq \frac{\sqrt{5}+1}{2}\right)\end{matrix}\right,
Diagramm
Teilen
In die Zwischenablage kopiert
x^{2}-x^{3}+x^{2}y+x-xdy=0
Verwenden Sie das Distributivgesetz, um x^{2} mit 1-x+y zu multiplizieren.
-x^{3}+x^{2}y+x-xdy=-x^{2}
Subtrahieren Sie x^{2} von beiden Seiten. Jede Subtraktion von null ergibt ihre Negation.
x^{2}y+x-xdy=-x^{2}+x^{3}
Auf beiden Seiten x^{3} addieren.
x-xdy=-x^{2}+x^{3}-x^{2}y
Subtrahieren Sie x^{2}y von beiden Seiten.
-xdy=-x^{2}+x^{3}-x^{2}y-x
Subtrahieren Sie x von beiden Seiten.
\left(-xy\right)d=x^{3}-x^{2}-x-yx^{2}
Die Gleichung weist die Standardform auf.
\frac{\left(-xy\right)d}{-xy}=\frac{x\left(x^{2}-xy-x-1\right)}{-xy}
Dividieren Sie beide Seiten durch -xy.
d=\frac{x\left(x^{2}-xy-x-1\right)}{-xy}
Division durch -xy macht die Multiplikation mit -xy rückgängig.
d=\frac{1+x-x^{2}}{y}+x
Dividieren Sie x\left(-x+x^{2}-xy-1\right) durch -xy.
x^{2}-x^{3}+x^{2}y+x-xdy=0
Verwenden Sie das Distributivgesetz, um x^{2} mit 1-x+y zu multiplizieren.
-x^{3}+x^{2}y+x-xdy=-x^{2}
Subtrahieren Sie x^{2} von beiden Seiten. Jede Subtraktion von null ergibt ihre Negation.
x^{2}y+x-xdy=-x^{2}+x^{3}
Auf beiden Seiten x^{3} addieren.
x-xdy=-x^{2}+x^{3}-x^{2}y
Subtrahieren Sie x^{2}y von beiden Seiten.
-xdy=-x^{2}+x^{3}-x^{2}y-x
Subtrahieren Sie x von beiden Seiten.
\left(-xy\right)d=x^{3}-x^{2}-x-yx^{2}
Die Gleichung weist die Standardform auf.
\frac{\left(-xy\right)d}{-xy}=\frac{x\left(x^{2}-xy-x-1\right)}{-xy}
Dividieren Sie beide Seiten durch -xy.
d=\frac{x\left(x^{2}-xy-x-1\right)}{-xy}
Division durch -xy macht die Multiplikation mit -xy rückgängig.
d=\frac{1+x-x^{2}}{y}+x
Dividieren Sie x\left(-x+x^{2}-xy-1\right) durch -xy.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}