Direkt zum Inhalt
Nach x auflösen
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

x^{2}+3x-4=0
Subtrahieren Sie 4 von beiden Seiten.
a+b=3 ab=-4
Um die Gleichung zu lösen, faktorisieren Sie x^{2}+3x-4 mithilfe der Formel x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Um a und b zu finden, stellen Sie ein zu lösendes System auf.
-1,4 -2,2
Weil ab negativ ist, haben a und b entgegengesetzte Vorzeichen. Weil a+b positiv ist, hat die positive Zahl einen größeren Absolutwert als die negative. Alle ganzzahligen Paare auflisten, die das Produkt -4 ergeben.
-1+4=3 -2+2=0
Die Summe für jedes Paar berechnen.
a=-1 b=4
Die Lösung ist das Paar, das die Summe 3 ergibt.
\left(x-1\right)\left(x+4\right)
Schreiben Sie den faktorisierten Ausdruck "\left(x+a\right)\left(x+b\right)" mit den erhaltenen Werten um.
x=1 x=-4
Um Lösungen für die Gleichungen zu finden, lösen Sie x-1=0 und x+4=0.
x^{2}+3x-4=0
Subtrahieren Sie 4 von beiden Seiten.
a+b=3 ab=1\left(-4\right)=-4
Um die Gleichung zu lösen, faktorisieren Sie die linke Seite durch Gruppieren. Zuerst muss die linke Seite als x^{2}+ax+bx-4 umgeschrieben werden. Um a und b zu finden, stellen Sie ein zu lösendes System auf.
-1,4 -2,2
Weil ab negativ ist, haben a und b entgegengesetzte Vorzeichen. Weil a+b positiv ist, hat die positive Zahl einen größeren Absolutwert als die negative. Alle ganzzahligen Paare auflisten, die das Produkt -4 ergeben.
-1+4=3 -2+2=0
Die Summe für jedes Paar berechnen.
a=-1 b=4
Die Lösung ist das Paar, das die Summe 3 ergibt.
\left(x^{2}-x\right)+\left(4x-4\right)
x^{2}+3x-4 als \left(x^{2}-x\right)+\left(4x-4\right) umschreiben.
x\left(x-1\right)+4\left(x-1\right)
Klammern Sie x in der ersten und 4 in der zweiten Gruppe aus.
\left(x-1\right)\left(x+4\right)
Klammern Sie den gemeinsamen Term x-1 aus, indem Sie die distributive Eigenschaft verwenden.
x=1 x=-4
Um Lösungen für die Gleichungen zu finden, lösen Sie x-1=0 und x+4=0.
x^{2}+3x=4
Alle Gleichungen der Form ax^{2}+bx+c=0 können mithilfe dieser quadratischen Gleichung gelöst werden: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Die quadratische Gleichung ergibt zwei Lösungen, eine für ± bei Addition und eine bei Subtraktion.
x^{2}+3x-4=4-4
4 von beiden Seiten der Gleichung subtrahieren.
x^{2}+3x-4=0
Die Subtraktion von 4 von sich selbst ergibt 0.
x=\frac{-3±\sqrt{3^{2}-4\left(-4\right)}}{2}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch 1, b durch 3 und c durch -4, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-4\right)}}{2}
3 zum Quadrat.
x=\frac{-3±\sqrt{9+16}}{2}
Multiplizieren Sie -4 mit -4.
x=\frac{-3±\sqrt{25}}{2}
Addieren Sie 9 zu 16.
x=\frac{-3±5}{2}
Ziehen Sie die Quadratwurzel aus 25.
x=\frac{2}{2}
Lösen Sie jetzt die Gleichung x=\frac{-3±5}{2}, wenn ± positiv ist. Addieren Sie -3 zu 5.
x=1
Dividieren Sie 2 durch 2.
x=-\frac{8}{2}
Lösen Sie jetzt die Gleichung x=\frac{-3±5}{2}, wenn ± negativ ist. Subtrahieren Sie 5 von -3.
x=-4
Dividieren Sie -8 durch 2.
x=1 x=-4
Die Gleichung ist jetzt gelöst.
x^{2}+3x=4
Quadratische Gleichungen wie diese können durch quadratische Ergänzung gelöst werden. Für die Anwendung der quadratischen Ergänzung muss die Gleichung zuerst in die Form x^{2}+bx=c gebracht werden.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=4+\left(\frac{3}{2}\right)^{2}
Dividieren Sie 3, den Koeffizienten des Terms x, durch 2, um \frac{3}{2} zu erhalten. Addieren Sie dann das Quadrat von \frac{3}{2} zu beiden Seiten der Gleichung. Dieser Schritt macht die linke Seite der Gleichung zu einem perfekten Quadrat.
x^{2}+3x+\frac{9}{4}=4+\frac{9}{4}
Bestimmen Sie das Quadrat von \frac{3}{2}, indem Sie das Quadrat des Zählers und das Quadrat des Nenners des Bruchs bilden.
x^{2}+3x+\frac{9}{4}=\frac{25}{4}
Addieren Sie 4 zu \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{25}{4}
Faktor x^{2}+3x+\frac{9}{4}. Wenn es sich bei x^{2}+bx+c um ein perfektes Quadrat handelt, kann es immer in der Form von \left(x+\frac{b}{2}\right)^{2} faktorisiert werden.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
x+\frac{3}{2}=\frac{5}{2} x+\frac{3}{2}=-\frac{5}{2}
Vereinfachen.
x=1 x=-4
\frac{3}{2} von beiden Seiten der Gleichung subtrahieren.