Direkt zum Inhalt
Nach x auflösen
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

a+b=2 ab=-15
Um die Gleichung, den Faktor x^{2}+2x-15 mithilfe der Formel x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) zu lösen. Um a und b zu finden, stellen Sie ein zu lösendes System auf.
-1,15 -3,5
Weil ab negativ ist, haben a und b entgegengesetzte Vorzeichen. Weil a+b positiv ist, hat die positive Zahl einen größeren Absolutwert als die negative. Alle ganzzahligen Paare auflisten, die das Produkt -15 ergeben.
-1+15=14 -3+5=2
Die Summe für jedes Paar berechnen.
a=-3 b=5
Die Lösung ist das Paar, das die Summe 2 ergibt.
\left(x-3\right)\left(x+5\right)
Schreiben Sie den faktorisierten Ausdruck "\left(x+a\right)\left(x+b\right)" mit den erhaltenen Werten um.
x=3 x=-5
Um Lösungen für die Gleichungen zu finden, lösen Sie x-3=0 und x+5=0.
a+b=2 ab=1\left(-15\right)=-15
Um die Gleichung zu lösen, faktorisieren Sie die linke Seite durch Gruppieren. Zuerst muss die linke Seite als x^{2}+ax+bx-15 umgeschrieben werden. Um a und b zu finden, stellen Sie ein zu lösendes System auf.
-1,15 -3,5
Weil ab negativ ist, haben a und b entgegengesetzte Vorzeichen. Weil a+b positiv ist, hat die positive Zahl einen größeren Absolutwert als die negative. Alle ganzzahligen Paare auflisten, die das Produkt -15 ergeben.
-1+15=14 -3+5=2
Die Summe für jedes Paar berechnen.
a=-3 b=5
Die Lösung ist das Paar, das die Summe 2 ergibt.
\left(x^{2}-3x\right)+\left(5x-15\right)
x^{2}+2x-15 als \left(x^{2}-3x\right)+\left(5x-15\right) umschreiben.
x\left(x-3\right)+5\left(x-3\right)
Klammern Sie x in der ersten und 5 in der zweiten Gruppe aus.
\left(x-3\right)\left(x+5\right)
Klammern Sie den gemeinsamen Term x-3 aus, indem Sie die distributive Eigenschaft verwenden.
x=3 x=-5
Um Lösungen für die Gleichungen zu finden, lösen Sie x-3=0 und x+5=0.
x^{2}+2x-15=0
Alle Gleichungen der Form ax^{2}+bx+c=0 können mithilfe dieser quadratischen Gleichung gelöst werden: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Die quadratische Gleichung ergibt zwei Lösungen, eine für ± bei Addition und eine bei Subtraktion.
x=\frac{-2±\sqrt{2^{2}-4\left(-15\right)}}{2}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch 1, b durch 2 und c durch -15, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-15\right)}}{2}
2 zum Quadrat.
x=\frac{-2±\sqrt{4+60}}{2}
Multiplizieren Sie -4 mit -15.
x=\frac{-2±\sqrt{64}}{2}
Addieren Sie 4 zu 60.
x=\frac{-2±8}{2}
Ziehen Sie die Quadratwurzel aus 64.
x=\frac{6}{2}
Lösen Sie jetzt die Gleichung x=\frac{-2±8}{2}, wenn ± positiv ist. Addieren Sie -2 zu 8.
x=3
Dividieren Sie 6 durch 2.
x=-\frac{10}{2}
Lösen Sie jetzt die Gleichung x=\frac{-2±8}{2}, wenn ± negativ ist. Subtrahieren Sie 8 von -2.
x=-5
Dividieren Sie -10 durch 2.
x=3 x=-5
Die Gleichung ist jetzt gelöst.
x^{2}+2x-15=0
Quadratische Gleichungen wie diese können durch quadratische Ergänzung gelöst werden. Für die Anwendung der quadratischen Ergänzung muss die Gleichung zuerst in die Form x^{2}+bx=c gebracht werden.
x^{2}+2x-15-\left(-15\right)=-\left(-15\right)
Addieren Sie 15 zu beiden Seiten der Gleichung.
x^{2}+2x=-\left(-15\right)
Die Subtraktion von -15 von sich selbst ergibt 0.
x^{2}+2x=15
Subtrahieren Sie -15 von 0.
x^{2}+2x+1^{2}=15+1^{2}
Dividieren Sie 2, den Koeffizienten des Terms x, durch 2, um 1 zu erhalten. Addieren Sie dann das Quadrat von 1 zu beiden Seiten der Gleichung. Dieser Schritt macht die linke Seite der Gleichung zu einem perfekten Quadrat.
x^{2}+2x+1=15+1
1 zum Quadrat.
x^{2}+2x+1=16
Addieren Sie 15 zu 1.
\left(x+1\right)^{2}=16
Faktor x^{2}+2x+1. Wenn x^{2}+bx+c ein perfektes Quadrat ist, kann es im Allgemeinen immer als \left(x+\frac{b}{2}\right)^{2} faktorisieren.
\sqrt{\left(x+1\right)^{2}}=\sqrt{16}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
x+1=4 x+1=-4
Vereinfachen.
x=3 x=-5
1 von beiden Seiten der Gleichung subtrahieren.