Nach x auflösen (komplexe Lösung)
x=-1+5i
x=-1-5i
Diagramm
Teilen
In die Zwischenablage kopiert
x^{2}+2x+26=0
Alle Gleichungen der Form ax^{2}+bx+c=0 können mithilfe dieser quadratischen Gleichung gelöst werden: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Die quadratische Gleichung ergibt zwei Lösungen, eine für ± bei Addition und eine bei Subtraktion.
x=\frac{-2±\sqrt{2^{2}-4\times 26}}{2}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch 1, b durch 2 und c durch 26, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 26}}{2}
2 zum Quadrat.
x=\frac{-2±\sqrt{4-104}}{2}
Multiplizieren Sie -4 mit 26.
x=\frac{-2±\sqrt{-100}}{2}
Addieren Sie 4 zu -104.
x=\frac{-2±10i}{2}
Ziehen Sie die Quadratwurzel aus -100.
x=\frac{-2+10i}{2}
Lösen Sie jetzt die Gleichung x=\frac{-2±10i}{2}, wenn ± positiv ist. Addieren Sie -2 zu 10i.
x=-1+5i
Dividieren Sie -2+10i durch 2.
x=\frac{-2-10i}{2}
Lösen Sie jetzt die Gleichung x=\frac{-2±10i}{2}, wenn ± negativ ist. Subtrahieren Sie 10i von -2.
x=-1-5i
Dividieren Sie -2-10i durch 2.
x=-1+5i x=-1-5i
Die Gleichung ist jetzt gelöst.
x^{2}+2x+26=0
Quadratische Gleichungen wie diese können durch quadratische Ergänzung gelöst werden. Für die Anwendung der quadratischen Ergänzung muss die Gleichung zuerst in die Form x^{2}+bx=c gebracht werden.
x^{2}+2x+26-26=-26
26 von beiden Seiten der Gleichung subtrahieren.
x^{2}+2x=-26
Die Subtraktion von 26 von sich selbst ergibt 0.
x^{2}+2x+1^{2}=-26+1^{2}
Dividieren Sie 2, den Koeffizienten des Terms x, durch 2, um 1 zu erhalten. Addieren Sie dann das Quadrat von 1 zu beiden Seiten der Gleichung. Dieser Schritt macht die linke Seite der Gleichung zu einem perfekten Quadrat.
x^{2}+2x+1=-26+1
1 zum Quadrat.
x^{2}+2x+1=-25
Addieren Sie -26 zu 1.
\left(x+1\right)^{2}=-25
Faktor x^{2}+2x+1. Wenn x^{2}+bx+c ein perfektes Quadrat ist, kann es im Allgemeinen immer als \left(x+\frac{b}{2}\right)^{2} faktorisieren.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-25}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
x+1=5i x+1=-5i
Vereinfachen.
x=-1+5i x=-1-5i
1 von beiden Seiten der Gleichung subtrahieren.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}