Direkt zum Inhalt
Faktorisieren
Tick mark Image
Auswerten
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

x^{19}\left(1-x^{38}\right)
Klammern Sie x^{19} aus.
\left(1+x^{19}\right)\left(1-x^{19}\right)
Betrachten Sie 1-x^{38}. 1-x^{38} als 1^{2}-\left(-x^{19}\right)^{2} umschreiben. Die Differenz der Quadrate kann mithilfe der Regel faktorisiert werden: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{19}+1\right)\left(-x^{19}+1\right)
Ordnen Sie die Terme neu an.
\left(x+1\right)\left(x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^{9}+x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1\right)
Betrachten Sie x^{19}+1. Laut dem Satz über rationale Nullstellen (Rational Root Theorem) haben alle rationalen Nullstellen eines Polynoms die Form \frac{p}{q}, wobei der konstante Ausdruck 1 durch p dividiert wird und der Leitkoeffizient 1 durch q. Eine solche Wurzel ist -1. Faktorisieren Sie das Polynom, indem Sie es durch x+1 teilen.
\left(x-1\right)\left(-x^{18}-x^{17}-x^{16}-x^{15}-x^{14}-x^{13}-x^{12}-x^{11}-x^{10}-x^{9}-x^{8}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}-x^{2}-x-1\right)
Betrachten Sie -x^{19}+1. Laut dem Satz über rationale Nullstellen (Rational Root Theorem) haben alle rationalen Nullstellen eines Polynoms die Form \frac{p}{q}, wobei der konstante Ausdruck 1 durch p dividiert wird und der Leitkoeffizient -1 durch q. Eine solche Wurzel ist 1. Faktorisieren Sie das Polynom, indem Sie es durch x-1 teilen.
x^{19}\left(x+1\right)\left(x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^{9}+x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1\right)\left(x-1\right)\left(-x^{18}-x^{17}-x^{16}-x^{15}-x^{14}-x^{13}-x^{12}-x^{11}-x^{10}-x^{9}-x^{8}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}-x^{2}-x-1\right)
Schreiben Sie den vollständigen, faktorisierten Ausdruck um. Die folgenden Polynome sind nicht faktorisiert, weil sie keine rationalen Nullstellen besitzen: -x^{18}-x^{17}-x^{16}-x^{15}-x^{14}-x^{13}-x^{12}-x^{11}-x^{10}-x^{9}-x^{8}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}-x^{2}-x-1,x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^{9}+x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1.