Nach x auflösen
x=\sqrt{2}+1\approx 2,414213562
x=1-\sqrt{2}\approx -0,414213562
Diagramm
Teilen
In die Zwischenablage kopiert
x-\frac{x+1}{x-1}=0
Subtrahieren Sie \frac{x+1}{x-1} von beiden Seiten.
\frac{x\left(x-1\right)}{x-1}-\frac{x+1}{x-1}=0
Um Ausdrücke zu addieren oder subtrahieren, erweitern Sie sie, um ihre Nenner gleichnamig zu machen. Multiplizieren Sie x mit \frac{x-1}{x-1}.
\frac{x\left(x-1\right)-\left(x+1\right)}{x-1}=0
Da \frac{x\left(x-1\right)}{x-1} und \frac{x+1}{x-1} denselben Nenner haben, subtrahieren Sie diese, indem Sie ihre Zähler subtrahieren.
\frac{x^{2}-x-x-1}{x-1}=0
Führen Sie die Multiplikationen als "x\left(x-1\right)-\left(x+1\right)" aus.
\frac{x^{2}-2x-1}{x-1}=0
Ähnliche Terme in x^{2}-x-x-1 kombinieren.
x^{2}-2x-1=0
Die Variable x kann nicht gleich 1 sein, weil die Division durch null nicht definiert ist. Multiplizieren Sie beide Seiten der Gleichung mit x-1.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)}}{2}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch 1, b durch -2 und c durch -1, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)}}{2}
-2 zum Quadrat.
x=\frac{-\left(-2\right)±\sqrt{4+4}}{2}
Multiplizieren Sie -4 mit -1.
x=\frac{-\left(-2\right)±\sqrt{8}}{2}
Addieren Sie 4 zu 4.
x=\frac{-\left(-2\right)±2\sqrt{2}}{2}
Ziehen Sie die Quadratwurzel aus 8.
x=\frac{2±2\sqrt{2}}{2}
Das Gegenteil von -2 ist 2.
x=\frac{2\sqrt{2}+2}{2}
Lösen Sie jetzt die Gleichung x=\frac{2±2\sqrt{2}}{2}, wenn ± positiv ist. Addieren Sie 2 zu 2\sqrt{2}.
x=\sqrt{2}+1
Dividieren Sie 2+2\sqrt{2} durch 2.
x=\frac{2-2\sqrt{2}}{2}
Lösen Sie jetzt die Gleichung x=\frac{2±2\sqrt{2}}{2}, wenn ± negativ ist. Subtrahieren Sie 2\sqrt{2} von 2.
x=1-\sqrt{2}
Dividieren Sie 2-2\sqrt{2} durch 2.
x=\sqrt{2}+1 x=1-\sqrt{2}
Die Gleichung ist jetzt gelöst.
x-\frac{x+1}{x-1}=0
Subtrahieren Sie \frac{x+1}{x-1} von beiden Seiten.
\frac{x\left(x-1\right)}{x-1}-\frac{x+1}{x-1}=0
Um Ausdrücke zu addieren oder subtrahieren, erweitern Sie sie, um ihre Nenner gleichnamig zu machen. Multiplizieren Sie x mit \frac{x-1}{x-1}.
\frac{x\left(x-1\right)-\left(x+1\right)}{x-1}=0
Da \frac{x\left(x-1\right)}{x-1} und \frac{x+1}{x-1} denselben Nenner haben, subtrahieren Sie diese, indem Sie ihre Zähler subtrahieren.
\frac{x^{2}-x-x-1}{x-1}=0
Führen Sie die Multiplikationen als "x\left(x-1\right)-\left(x+1\right)" aus.
\frac{x^{2}-2x-1}{x-1}=0
Ähnliche Terme in x^{2}-x-x-1 kombinieren.
x^{2}-2x-1=0
Die Variable x kann nicht gleich 1 sein, weil die Division durch null nicht definiert ist. Multiplizieren Sie beide Seiten der Gleichung mit x-1.
x^{2}-2x=1
Auf beiden Seiten 1 addieren. Eine beliebige Zahl plus null ergibt sich selbst.
x^{2}-2x+1=1+1
Dividieren Sie -2, den Koeffizienten des Terms x, durch 2, um -1 zu erhalten. Addieren Sie dann das Quadrat von -1 zu beiden Seiten der Gleichung. Dieser Schritt macht die linke Seite der Gleichung zu einem perfekten Quadrat.
x^{2}-2x+1=2
Addieren Sie 1 zu 1.
\left(x-1\right)^{2}=2
Faktor x^{2}-2x+1. Wenn x^{2}+bx+c ein perfektes Quadrat ist, kann es im Allgemeinen immer als \left(x+\frac{b}{2}\right)^{2} faktorisieren.
\sqrt{\left(x-1\right)^{2}}=\sqrt{2}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
x-1=\sqrt{2} x-1=-\sqrt{2}
Vereinfachen.
x=\sqrt{2}+1 x=1-\sqrt{2}
Addieren Sie 1 zu beiden Seiten der Gleichung.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}