Nach w auflösen
w=-5
w=2
Teilen
In die Zwischenablage kopiert
a+b=3 ab=-10
Um die Gleichung, den Faktor w^{2}+3w-10 mithilfe der Formel w^{2}+\left(a+b\right)w+ab=\left(w+a\right)\left(w+b\right) zu lösen. Um a und b zu finden, stellen Sie ein zu lösendes System auf.
-1,10 -2,5
Weil ab negativ ist, haben a und b entgegengesetzte Vorzeichen. Weil a+b positiv ist, hat die positive Zahl einen größeren Absolutwert als die negative. Alle ganzzahligen Paare auflisten, die das Produkt -10 ergeben.
-1+10=9 -2+5=3
Die Summe für jedes Paar berechnen.
a=-2 b=5
Die Lösung ist das Paar, das die Summe 3 ergibt.
\left(w-2\right)\left(w+5\right)
Schreiben Sie den faktorisierten Ausdruck "\left(w+a\right)\left(w+b\right)" mit den erhaltenen Werten um.
w=2 w=-5
Um Lösungen für die Gleichungen zu finden, lösen Sie w-2=0 und w+5=0.
a+b=3 ab=1\left(-10\right)=-10
Um die Gleichung zu lösen, faktorisieren Sie die linke Seite durch Gruppieren. Zuerst muss die linke Seite als w^{2}+aw+bw-10 umgeschrieben werden. Um a und b zu finden, stellen Sie ein zu lösendes System auf.
-1,10 -2,5
Weil ab negativ ist, haben a und b entgegengesetzte Vorzeichen. Weil a+b positiv ist, hat die positive Zahl einen größeren Absolutwert als die negative. Alle ganzzahligen Paare auflisten, die das Produkt -10 ergeben.
-1+10=9 -2+5=3
Die Summe für jedes Paar berechnen.
a=-2 b=5
Die Lösung ist das Paar, das die Summe 3 ergibt.
\left(w^{2}-2w\right)+\left(5w-10\right)
w^{2}+3w-10 als \left(w^{2}-2w\right)+\left(5w-10\right) umschreiben.
w\left(w-2\right)+5\left(w-2\right)
Klammern Sie w in der ersten und 5 in der zweiten Gruppe aus.
\left(w-2\right)\left(w+5\right)
Klammern Sie den gemeinsamen Term w-2 aus, indem Sie die distributive Eigenschaft verwenden.
w=2 w=-5
Um Lösungen für die Gleichungen zu finden, lösen Sie w-2=0 und w+5=0.
w^{2}+3w-10=0
Alle Gleichungen der Form ax^{2}+bx+c=0 können mithilfe dieser quadratischen Gleichung gelöst werden: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Die quadratische Gleichung ergibt zwei Lösungen, eine für ± bei Addition und eine bei Subtraktion.
w=\frac{-3±\sqrt{3^{2}-4\left(-10\right)}}{2}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch 1, b durch 3 und c durch -10, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-3±\sqrt{9-4\left(-10\right)}}{2}
3 zum Quadrat.
w=\frac{-3±\sqrt{9+40}}{2}
Multiplizieren Sie -4 mit -10.
w=\frac{-3±\sqrt{49}}{2}
Addieren Sie 9 zu 40.
w=\frac{-3±7}{2}
Ziehen Sie die Quadratwurzel aus 49.
w=\frac{4}{2}
Lösen Sie jetzt die Gleichung w=\frac{-3±7}{2}, wenn ± positiv ist. Addieren Sie -3 zu 7.
w=2
Dividieren Sie 4 durch 2.
w=-\frac{10}{2}
Lösen Sie jetzt die Gleichung w=\frac{-3±7}{2}, wenn ± negativ ist. Subtrahieren Sie 7 von -3.
w=-5
Dividieren Sie -10 durch 2.
w=2 w=-5
Die Gleichung ist jetzt gelöst.
w^{2}+3w-10=0
Quadratische Gleichungen wie diese können durch quadratische Ergänzung gelöst werden. Für die Anwendung der quadratischen Ergänzung muss die Gleichung zuerst in die Form x^{2}+bx=c gebracht werden.
w^{2}+3w-10-\left(-10\right)=-\left(-10\right)
Addieren Sie 10 zu beiden Seiten der Gleichung.
w^{2}+3w=-\left(-10\right)
Die Subtraktion von -10 von sich selbst ergibt 0.
w^{2}+3w=10
Subtrahieren Sie -10 von 0.
w^{2}+3w+\left(\frac{3}{2}\right)^{2}=10+\left(\frac{3}{2}\right)^{2}
Dividieren Sie 3, den Koeffizienten des Terms x, durch 2, um \frac{3}{2} zu erhalten. Addieren Sie dann das Quadrat von \frac{3}{2} zu beiden Seiten der Gleichung. Dieser Schritt macht die linke Seite der Gleichung zu einem perfekten Quadrat.
w^{2}+3w+\frac{9}{4}=10+\frac{9}{4}
Bestimmen Sie das Quadrat von \frac{3}{2}, indem Sie das Quadrat des Zählers und das Quadrat des Nenners des Bruchs bilden.
w^{2}+3w+\frac{9}{4}=\frac{49}{4}
Addieren Sie 10 zu \frac{9}{4}.
\left(w+\frac{3}{2}\right)^{2}=\frac{49}{4}
Faktor w^{2}+3w+\frac{9}{4}. Wenn x^{2}+bx+c ein perfektes Quadrat ist, kann es im Allgemeinen immer als \left(x+\frac{b}{2}\right)^{2} faktorisieren.
\sqrt{\left(w+\frac{3}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
w+\frac{3}{2}=\frac{7}{2} w+\frac{3}{2}=-\frac{7}{2}
Vereinfachen.
w=2 w=-5
\frac{3}{2} von beiden Seiten der Gleichung subtrahieren.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}