u d y \frac { d y } { u d y + y d u } = y + \sqrt { u ^ { 2 } y ^ { 2 } - y ^ { 2 } }
Nach d auflösen (komplexe Lösung)
d=\frac{2\left(\sqrt{y^{2}\left(u^{2}-1\right)}+y\right)}{y}
\left(u\neq \sqrt{2}\text{ or }arg(y)<\pi \right)\text{ and }\left(u\neq -\sqrt{2}\text{ or }arg(y)<\pi \right)\text{ and }y\neq 0\text{ and }u\neq 0
Nach u auflösen (komplexe Lösung)
\left\{\begin{matrix}u=1\text{; }u=-1\text{, }&d=2\text{ and }y\neq 0\\u=-\frac{i\sqrt{-d^{2}+4d-8}}{2}\text{; }u=\frac{i\sqrt{-d^{2}+4d-8}}{2}\text{, }&d\neq 0\text{ and }y\neq 0\text{ and }d\neq 2-2i\text{ and }d\neq 2+2i\text{ and }arg(\frac{dy}{2}-y)<\pi \end{matrix}\right,
Nach d auflösen
d=\frac{2\left(|y|\sqrt{u^{2}-1}+y\right)}{y}
\left(y\neq 0\text{ and }u\neq -\sqrt{2}\text{ and }u\leq -1\right)\text{ or }\left(y\neq 0\text{ and }u\neq \sqrt{2}\text{ and }u\geq 1\right)\text{ or }\left(y>0\text{ and }|u|\geq 1\right)
Nach u auflösen
u=\frac{\sqrt{d^{2}-4d+8}}{2}
u=-\frac{\sqrt{d^{2}-4d+8}}{2}\text{, }\left(d\neq 0\text{ and }d\leq 2\text{ and }y<0\right)\text{ or }\left(d\geq 2\text{ and }y>0\right)
Teilen
In die Zwischenablage kopiert
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}