Nach n auflösen
n=-\frac{m\left(12m-1\right)}{60m+1}
m\neq -\frac{1}{60}\text{ and }m\neq 0
Nach m auflösen (komplexe Lösung)
\left\{\begin{matrix}\\m=\frac{\sqrt{3600n^{2}-168n+1}}{24}-\frac{5n}{2}+\frac{1}{24}\text{, }&\text{unconditionally}\\m=-\frac{\sqrt{3600n^{2}-168n+1}}{24}-\frac{5n}{2}+\frac{1}{24}\text{, }&n\neq 0\end{matrix}\right,
Nach m auflösen
\left\{\begin{matrix}m=-\frac{\sqrt{3600n^{2}-168n+1}}{24}-\frac{5n}{2}+\frac{1}{24}\text{, }&n\geq \frac{\sqrt{6}}{150}+\frac{7}{300}\text{ or }\left(n\neq 0\text{ and }n\leq -\frac{\sqrt{6}}{150}+\frac{7}{300}\right)\\m=\frac{\sqrt{3600n^{2}-168n+1}}{24}-\frac{5n}{2}+\frac{1}{24}\text{, }&n\geq \frac{\sqrt{6}}{150}+\frac{7}{300}\text{ or }n\leq -\frac{\sqrt{6}}{150}+\frac{7}{300}\end{matrix}\right,
Teilen
In die Zwischenablage kopiert
12mm+5n\times 12m=m-n
Multiplizieren Sie beide Seiten der Gleichung mit 12m.
12m^{2}+5n\times 12m=m-n
Multiplizieren Sie m und m, um m^{2} zu erhalten.
12m^{2}+60nm=m-n
Multiplizieren Sie 5 und 12, um 60 zu erhalten.
12m^{2}+60nm+n=m
Auf beiden Seiten n addieren.
60nm+n=m-12m^{2}
Subtrahieren Sie 12m^{2} von beiden Seiten.
\left(60m+1\right)n=m-12m^{2}
Kombinieren Sie alle Terme, die n enthalten.
\frac{\left(60m+1\right)n}{60m+1}=\frac{m\left(1-12m\right)}{60m+1}
Dividieren Sie beide Seiten durch 60m+1.
n=\frac{m\left(1-12m\right)}{60m+1}
Division durch 60m+1 macht die Multiplikation mit 60m+1 rückgängig.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}