Nach k auflösen
k=-\frac{x-1}{\left(x+1\right)^{2}}
x\neq -1
Nach x auflösen (komplexe Lösung)
\left\{\begin{matrix}x=\frac{-2k+\sqrt{8k+1}-1}{2k}\text{; }x=-\frac{2k+\sqrt{8k+1}+1}{2k}\text{, }&k\neq 0\\x=1\text{, }&k=0\end{matrix}\right,
Nach x auflösen
\left\{\begin{matrix}x=\frac{-2k+\sqrt{8k+1}-1}{2k}\text{; }x=-\frac{2k+\sqrt{8k+1}+1}{2k}\text{, }&k\neq 0\text{ and }k\geq -\frac{1}{8}\\x=1\text{, }&k=0\end{matrix}\right,
Diagramm
Teilen
In die Zwischenablage kopiert
kx^{2}+2kx+x+k-1=0
Verwenden Sie das Distributivgesetz, um 2k+1 mit x zu multiplizieren.
kx^{2}+2kx+k-1=-x
Subtrahieren Sie x von beiden Seiten. Jede Subtraktion von null ergibt ihre Negation.
kx^{2}+2kx+k=-x+1
Auf beiden Seiten 1 addieren.
\left(x^{2}+2x+1\right)k=-x+1
Kombinieren Sie alle Terme, die k enthalten.
\left(x^{2}+2x+1\right)k=1-x
Die Gleichung weist die Standardform auf.
\frac{\left(x^{2}+2x+1\right)k}{x^{2}+2x+1}=\frac{1-x}{x^{2}+2x+1}
Dividieren Sie beide Seiten durch x^{2}+2x+1.
k=\frac{1-x}{x^{2}+2x+1}
Division durch x^{2}+2x+1 macht die Multiplikation mit x^{2}+2x+1 rückgängig.
k=\frac{1-x}{\left(x+1\right)^{2}}
Dividieren Sie -x+1 durch x^{2}+2x+1.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}