Nach k auflösen
k=\frac{63}{19\alpha +975}
\alpha \neq -\frac{975}{19}
Nach α auflösen
\alpha =-\frac{975}{19}+\frac{63}{19k}
k\neq 0
Teilen
In die Zwischenablage kopiert
38k\alpha +1950k=126
Verwenden Sie das Distributivgesetz, um k mit 38\alpha +1950 zu multiplizieren.
\left(38\alpha +1950\right)k=126
Kombinieren Sie alle Terme, die k enthalten.
\frac{\left(38\alpha +1950\right)k}{38\alpha +1950}=\frac{126}{38\alpha +1950}
Dividieren Sie beide Seiten durch 38\alpha +1950.
k=\frac{126}{38\alpha +1950}
Division durch 38\alpha +1950 macht die Multiplikation mit 38\alpha +1950 rückgängig.
k=\frac{63}{19\alpha +975}
Dividieren Sie 126 durch 38\alpha +1950.
38k\alpha +1950k=126
Verwenden Sie das Distributivgesetz, um k mit 38\alpha +1950 zu multiplizieren.
38k\alpha =126-1950k
Subtrahieren Sie 1950k von beiden Seiten.
\frac{38k\alpha }{38k}=\frac{126-1950k}{38k}
Dividieren Sie beide Seiten durch 38k.
\alpha =\frac{126-1950k}{38k}
Division durch 38k macht die Multiplikation mit 38k rückgängig.
\alpha =-\frac{975}{19}+\frac{63}{19k}
Dividieren Sie 126-1950k durch 38k.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}