Direkt zum Inhalt
Faktorisieren
Tick mark Image
Auswerten
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

a+b=8 ab=1\times 16=16
Faktorisieren Sie den Ausdruck durch Gruppieren. Zuerst muss der Ausdruck als x^{2}+ax+bx+16 umgeschrieben werden. Um a und b zu finden, stellen Sie ein zu lösendes System auf.
1,16 2,8 4,4
Weil ab positiv ist, haben a und b dasselbe Vorzeichen. Weil a+b positiv ist, sind a und b beide positiv. Alle ganzzahligen Paare auflisten, die das Produkt 16 ergeben.
1+16=17 2+8=10 4+4=8
Die Summe für jedes Paar berechnen.
a=4 b=4
Die Lösung ist das Paar, das die Summe 8 ergibt.
\left(x^{2}+4x\right)+\left(4x+16\right)
x^{2}+8x+16 als \left(x^{2}+4x\right)+\left(4x+16\right) umschreiben.
x\left(x+4\right)+4\left(x+4\right)
Klammern Sie x in der ersten und 4 in der zweiten Gruppe aus.
\left(x+4\right)\left(x+4\right)
Klammern Sie den gemeinsamen Term x+4 aus, indem Sie die distributive Eigenschaft verwenden.
\left(x+4\right)^{2}
Umschreiben als binomisches Quadrat.
factor(x^{2}+8x+16)
Dieses Trinom hat die Form eines trinomischen Quadrats, möglicherweise mit einem gemeinsamen Faktor multipliziert. Trinomische Quadrate können durch Finden der Quadratwurzeln des führenden und des schließenden Terms in Faktoren zerlegt werden.
\sqrt{16}=4
Suchen Sie die Quadratwurzel des schließenden Terms 16.
\left(x+4\right)^{2}
Das trinomische Quadrat ist das Quadrat des Binoms, das die Summe oder Differenz der Quadratwurzeln des führenden und des schließenden Terms ist, wodurch das Vorzeichen durch das Vorzeichen des mittleren Terms des trinomischen Quadrats bestimmt wird.
x^{2}+8x+16=0
Ein quadratisches Polynom kann mithilfe der Transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) faktorisiert werden, wobei x_{1} und x_{2} die Lösungen der quadratischen Gleichung ax^{2}+bx+c=0 sind.
x=\frac{-8±\sqrt{8^{2}-4\times 16}}{2}
Alle Gleichungen der Form ax^{2}+bx+c=0 können mithilfe dieser quadratischen Gleichung gelöst werden: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Die quadratische Gleichung ergibt zwei Lösungen, eine für ± bei Addition und eine bei Subtraktion.
x=\frac{-8±\sqrt{64-4\times 16}}{2}
8 zum Quadrat.
x=\frac{-8±\sqrt{64-64}}{2}
Multiplizieren Sie -4 mit 16.
x=\frac{-8±\sqrt{0}}{2}
Addieren Sie 64 zu -64.
x=\frac{-8±0}{2}
Ziehen Sie die Quadratwurzel aus 0.
x^{2}+8x+16=\left(x-\left(-4\right)\right)\left(x-\left(-4\right)\right)
Den ursprünglichen Ausdruck mithilfe von ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) faktorisieren. Setzen Sie für x_{1} -4 und für x_{2} -4 ein.
x^{2}+8x+16=\left(x+4\right)\left(x+4\right)
Alle Ausdrücke der Form p-\left(-q\right) zu p+q vereinfachen.