Direkt zum Inhalt
Faktorisieren
Tick mark Image
Auswerten
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

-x^{2}+2x+3
Ordnen Sie das Polynom neu an, um es in die Standardform zu bringen. Platzieren Sie die Terme in der Reihenfolge von der höchsten zur niedrigsten Potenz.
a+b=2 ab=-3=-3
Faktorisieren Sie den Ausdruck durch Gruppieren. Zuerst muss der Ausdruck als -x^{2}+ax+bx+3 umgeschrieben werden. Um a und b zu finden, stellen Sie ein zu lösendes System auf.
a=3 b=-1
Weil ab negativ ist, haben a und b entgegengesetzte Vorzeichen. Weil a+b positiv ist, hat die positive Zahl einen größeren Absolutwert als die negative. Das einzige derartige Paar ist die Lösung des Systems.
\left(-x^{2}+3x\right)+\left(-x+3\right)
-x^{2}+2x+3 als \left(-x^{2}+3x\right)+\left(-x+3\right) umschreiben.
-x\left(x-3\right)-\left(x-3\right)
Klammern Sie -x in der ersten und -1 in der zweiten Gruppe aus.
\left(x-3\right)\left(-x-1\right)
Klammern Sie den gemeinsamen Term x-3 aus, indem Sie die distributive Eigenschaft verwenden.
-x^{2}+2x+3=0
Ein quadratisches Polynom kann mithilfe der Transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) faktorisiert werden, wobei x_{1} und x_{2} die Lösungen der quadratischen Gleichung ax^{2}+bx+c=0 sind.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
Alle Gleichungen der Form ax^{2}+bx+c=0 können mithilfe dieser quadratischen Gleichung gelöst werden: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Die quadratische Gleichung ergibt zwei Lösungen, eine für ± bei Addition und eine bei Subtraktion.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
2 zum Quadrat.
x=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
Multiplizieren Sie -4 mit -1.
x=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
Multiplizieren Sie 4 mit 3.
x=\frac{-2±\sqrt{16}}{2\left(-1\right)}
Addieren Sie 4 zu 12.
x=\frac{-2±4}{2\left(-1\right)}
Ziehen Sie die Quadratwurzel aus 16.
x=\frac{-2±4}{-2}
Multiplizieren Sie 2 mit -1.
x=\frac{2}{-2}
Lösen Sie jetzt die Gleichung x=\frac{-2±4}{-2}, wenn ± positiv ist. Addieren Sie -2 zu 4.
x=-1
Dividieren Sie 2 durch -2.
x=-\frac{6}{-2}
Lösen Sie jetzt die Gleichung x=\frac{-2±4}{-2}, wenn ± negativ ist. Subtrahieren Sie 4 von -2.
x=3
Dividieren Sie -6 durch -2.
-x^{2}+2x+3=-\left(x-\left(-1\right)\right)\left(x-3\right)
Den ursprünglichen Ausdruck mithilfe von ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) faktorisieren. Setzen Sie für x_{1} -1 und für x_{2} 3 ein.
-x^{2}+2x+3=-\left(x+1\right)\left(x-3\right)
Alle Ausdrücke der Form p-\left(-q\right) zu p+q vereinfachen.