Direkt zum Inhalt
Faktorisieren
Tick mark Image
Auswerten
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

\left(x-5\right)\left(-x^{2}-2x+3\right)
Laut dem Satz über rationale Nullstellen (Rational Root Theorem) haben alle rationalen Nullstellen eines Polynoms die Form \frac{p}{q}, wobei der konstante Ausdruck -15 durch p dividiert wird und der Leitkoeffizient -1 durch q. Eine solche Wurzel ist 5. Faktorisieren Sie das Polynom, indem Sie es durch x-5 teilen.
a+b=-2 ab=-3=-3
Betrachten Sie -x^{2}-2x+3. Faktorisieren Sie den Ausdruck durch Gruppieren. Zuerst muss der Ausdruck als -x^{2}+ax+bx+3 umgeschrieben werden. Um a und b zu finden, stellen Sie ein zu lösendes System auf.
a=1 b=-3
Weil ab negativ ist, haben a und b entgegengesetzte Vorzeichen. Weil a+b negativ ist, hat die negative Zahl einen größeren Absolutwert als die positive. Das einzige derartige Paar ist die Lösung des Systems.
\left(-x^{2}+x\right)+\left(-3x+3\right)
-x^{2}-2x+3 als \left(-x^{2}+x\right)+\left(-3x+3\right) umschreiben.
x\left(-x+1\right)+3\left(-x+1\right)
Klammern Sie x in der ersten und 3 in der zweiten Gruppe aus.
\left(-x+1\right)\left(x+3\right)
Klammern Sie den gemeinsamen Term -x+1 aus, indem Sie die distributive Eigenschaft verwenden.
\left(x-5\right)\left(-x+1\right)\left(x+3\right)
Schreiben Sie den vollständigen, faktorisierten Ausdruck um.