Nach f auflösen
f=-\frac{x}{-2x^{2}+5x-1}
x\neq 0\text{ and }x\neq \frac{\sqrt{17}+5}{4}\text{ and }x\neq \frac{5-\sqrt{17}}{4}
Nach x auflösen (komplexe Lösung)
x=-\frac{\sqrt{17f^{2}+10f+1}-5f-1}{4f}
x=\frac{\sqrt{17f^{2}+10f+1}+5f+1}{4f}\text{, }f\neq 0
Nach x auflösen
x=-\frac{\sqrt{17f^{2}+10f+1}-5f-1}{4f}
x=\frac{\sqrt{17f^{2}+10f+1}+5f+1}{4f}\text{, }f\leq \frac{-2\sqrt{2}-5}{17}\text{ or }\left(f\neq 0\text{ and }f\geq \frac{2\sqrt{2}-5}{17}\right)
Diagramm
Teilen
In die Zwischenablage kopiert
\frac{1}{f}x=2x^{2}-5x+1
Ordnen Sie die Terme neu an.
1x=2x^{2}f-5xf+f
Die Variable f kann nicht gleich 0 sein, weil die Division durch null nicht definiert ist. Multiplizieren Sie beide Seiten der Gleichung mit f.
2x^{2}f-5xf+f=1x
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
2fx^{2}-5fx+f=x
Ordnen Sie die Terme neu an.
\left(2x^{2}-5x+1\right)f=x
Kombinieren Sie alle Terme, die f enthalten.
\frac{\left(2x^{2}-5x+1\right)f}{2x^{2}-5x+1}=\frac{x}{2x^{2}-5x+1}
Dividieren Sie beide Seiten durch 2x^{2}-5x+1.
f=\frac{x}{2x^{2}-5x+1}
Division durch 2x^{2}-5x+1 macht die Multiplikation mit 2x^{2}-5x+1 rückgängig.
f=\frac{x}{2x^{2}-5x+1}\text{, }f\neq 0
Die Variable f kann nicht gleich 0 sein.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}