e ^ { y } ( 1 + x ^ { 2 } ) d y = 2 x ( 1
Nach d auflösen (komplexe Lösung)
\left\{\begin{matrix}d=\frac{2x}{y\left(x^{2}+1\right)e^{y}}\text{, }&x\neq -i\text{ and }x\neq i\text{ and }y\neq 0\\d\in \mathrm{C}\text{, }&x=0\text{ and }y=0\end{matrix}\right,
Nach d auflösen
\left\{\begin{matrix}d=\frac{2x}{y\left(x^{2}+1\right)e^{y}}\text{, }&y\neq 0\\d\in \mathrm{R}\text{, }&x=0\text{ and }y=0\end{matrix}\right,
Nach x auflösen (komplexe Lösung)
\left\{\begin{matrix}x=\frac{\sqrt{1-\left(dy\right)^{2}e^{2y}}+1}{dye^{y}}\text{; }x=\frac{-\sqrt{1-\left(dy\right)^{2}e^{2y}}+1}{dye^{y}}\text{, }&d\neq 0\text{ and }y\neq 0\\x=\frac{dye^{y}}{2}\text{, }&d=0\text{ or }y=0\end{matrix}\right,
Nach x auflösen
\left\{\begin{matrix}x=\frac{\sqrt{1-\left(dy\right)^{2}e^{2y}}+1}{dye^{y}}\text{; }x=\frac{-\sqrt{1-\left(dy\right)^{2}e^{2y}}+1}{dye^{y}}\text{, }&d\neq 0\text{ and }y\neq 0\text{ and }|d|\leq \frac{1}{|y|e^{y}}\\x=\frac{dye^{y}}{2}\text{, }&d=0\text{ or }y=0\end{matrix}\right,
Teilen
In die Zwischenablage kopiert
\left(e^{y}+e^{y}x^{2}\right)dy=2x\times 1
Verwenden Sie das Distributivgesetz, um e^{y} mit 1+x^{2} zu multiplizieren.
\left(e^{y}d+e^{y}x^{2}d\right)y=2x\times 1
Verwenden Sie das Distributivgesetz, um e^{y}+e^{y}x^{2} mit d zu multiplizieren.
e^{y}dy+e^{y}x^{2}dy=2x\times 1
Verwenden Sie das Distributivgesetz, um e^{y}d+e^{y}x^{2}d mit y zu multiplizieren.
e^{y}dy+e^{y}x^{2}dy=2x
Multiplizieren Sie 2 und 1, um 2 zu erhalten.
\left(e^{y}y+e^{y}x^{2}y\right)d=2x
Kombinieren Sie alle Terme, die d enthalten.
\left(yx^{2}e^{y}+ye^{y}\right)d=2x
Die Gleichung weist die Standardform auf.
\frac{\left(yx^{2}e^{y}+ye^{y}\right)d}{yx^{2}e^{y}+ye^{y}}=\frac{2x}{yx^{2}e^{y}+ye^{y}}
Dividieren Sie beide Seiten durch e^{y}x^{2}y+e^{y}y.
d=\frac{2x}{yx^{2}e^{y}+ye^{y}}
Division durch e^{y}x^{2}y+e^{y}y macht die Multiplikation mit e^{y}x^{2}y+e^{y}y rückgängig.
d=\frac{2x}{y\left(x^{2}+1\right)e^{y}}
Dividieren Sie 2x durch e^{y}x^{2}y+e^{y}y.
\left(e^{y}+e^{y}x^{2}\right)dy=2x\times 1
Verwenden Sie das Distributivgesetz, um e^{y} mit 1+x^{2} zu multiplizieren.
\left(e^{y}d+e^{y}x^{2}d\right)y=2x\times 1
Verwenden Sie das Distributivgesetz, um e^{y}+e^{y}x^{2} mit d zu multiplizieren.
e^{y}dy+e^{y}x^{2}dy=2x\times 1
Verwenden Sie das Distributivgesetz, um e^{y}d+e^{y}x^{2}d mit y zu multiplizieren.
e^{y}dy+e^{y}x^{2}dy=2x
Multiplizieren Sie 2 und 1, um 2 zu erhalten.
\left(e^{y}y+e^{y}x^{2}y\right)d=2x
Kombinieren Sie alle Terme, die d enthalten.
\left(yx^{2}e^{y}+ye^{y}\right)d=2x
Die Gleichung weist die Standardform auf.
\frac{\left(yx^{2}e^{y}+ye^{y}\right)d}{yx^{2}e^{y}+ye^{y}}=\frac{2x}{yx^{2}e^{y}+ye^{y}}
Dividieren Sie beide Seiten durch e^{y}x^{2}y+e^{y}y.
d=\frac{2x}{yx^{2}e^{y}+ye^{y}}
Division durch e^{y}x^{2}y+e^{y}y macht die Multiplikation mit e^{y}x^{2}y+e^{y}y rückgängig.
d=\frac{2x}{y\left(x^{2}+1\right)e^{y}}
Dividieren Sie 2x durch e^{y}x^{2}y+e^{y}y.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}