Nach b auflösen
b=-3
b=2
Teilen
In die Zwischenablage kopiert
a+b=1 ab=-6
Um die Gleichung, den Faktor b^{2}+b-6 mithilfe der Formel b^{2}+\left(a+b\right)b+ab=\left(b+a\right)\left(b+b\right) zu lösen. Um a und b zu finden, stellen Sie ein zu lösendes System auf.
-1,6 -2,3
Weil ab negativ ist, haben a und b entgegengesetzte Vorzeichen. Weil a+b positiv ist, hat die positive Zahl einen größeren Absolutwert als die negative. Alle ganzzahligen Paare auflisten, die das Produkt -6 ergeben.
-1+6=5 -2+3=1
Die Summe für jedes Paar berechnen.
a=-2 b=3
Die Lösung ist das Paar, das die Summe 1 ergibt.
\left(b-2\right)\left(b+3\right)
Schreiben Sie den faktorisierten Ausdruck "\left(b+a\right)\left(b+b\right)" mit den erhaltenen Werten um.
b=2 b=-3
Um Lösungen für die Gleichungen zu finden, lösen Sie b-2=0 und b+3=0.
a+b=1 ab=1\left(-6\right)=-6
Um die Gleichung zu lösen, faktorisieren Sie die linke Seite durch Gruppieren. Zuerst muss die linke Seite als b^{2}+ab+bb-6 umgeschrieben werden. Um a und b zu finden, stellen Sie ein zu lösendes System auf.
-1,6 -2,3
Weil ab negativ ist, haben a und b entgegengesetzte Vorzeichen. Weil a+b positiv ist, hat die positive Zahl einen größeren Absolutwert als die negative. Alle ganzzahligen Paare auflisten, die das Produkt -6 ergeben.
-1+6=5 -2+3=1
Die Summe für jedes Paar berechnen.
a=-2 b=3
Die Lösung ist das Paar, das die Summe 1 ergibt.
\left(b^{2}-2b\right)+\left(3b-6\right)
b^{2}+b-6 als \left(b^{2}-2b\right)+\left(3b-6\right) umschreiben.
b\left(b-2\right)+3\left(b-2\right)
Klammern Sie b in der ersten und 3 in der zweiten Gruppe aus.
\left(b-2\right)\left(b+3\right)
Klammern Sie den gemeinsamen Term b-2 aus, indem Sie die distributive Eigenschaft verwenden.
b=2 b=-3
Um Lösungen für die Gleichungen zu finden, lösen Sie b-2=0 und b+3=0.
b^{2}+b-6=0
Alle Gleichungen der Form ax^{2}+bx+c=0 können mithilfe dieser quadratischen Gleichung gelöst werden: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Die quadratische Gleichung ergibt zwei Lösungen, eine für ± bei Addition und eine bei Subtraktion.
b=\frac{-1±\sqrt{1^{2}-4\left(-6\right)}}{2}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch 1, b durch 1 und c durch -6, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-1±\sqrt{1-4\left(-6\right)}}{2}
1 zum Quadrat.
b=\frac{-1±\sqrt{1+24}}{2}
Multiplizieren Sie -4 mit -6.
b=\frac{-1±\sqrt{25}}{2}
Addieren Sie 1 zu 24.
b=\frac{-1±5}{2}
Ziehen Sie die Quadratwurzel aus 25.
b=\frac{4}{2}
Lösen Sie jetzt die Gleichung b=\frac{-1±5}{2}, wenn ± positiv ist. Addieren Sie -1 zu 5.
b=2
Dividieren Sie 4 durch 2.
b=-\frac{6}{2}
Lösen Sie jetzt die Gleichung b=\frac{-1±5}{2}, wenn ± negativ ist. Subtrahieren Sie 5 von -1.
b=-3
Dividieren Sie -6 durch 2.
b=2 b=-3
Die Gleichung ist jetzt gelöst.
b^{2}+b-6=0
Quadratische Gleichungen wie diese können durch quadratische Ergänzung gelöst werden. Für die Anwendung der quadratischen Ergänzung muss die Gleichung zuerst in die Form x^{2}+bx=c gebracht werden.
b^{2}+b-6-\left(-6\right)=-\left(-6\right)
Addieren Sie 6 zu beiden Seiten der Gleichung.
b^{2}+b=-\left(-6\right)
Die Subtraktion von -6 von sich selbst ergibt 0.
b^{2}+b=6
Subtrahieren Sie -6 von 0.
b^{2}+b+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
Dividieren Sie 1, den Koeffizienten des Terms x, durch 2, um \frac{1}{2} zu erhalten. Addieren Sie dann das Quadrat von \frac{1}{2} zu beiden Seiten der Gleichung. Dieser Schritt macht die linke Seite der Gleichung zu einem perfekten Quadrat.
b^{2}+b+\frac{1}{4}=6+\frac{1}{4}
Bestimmen Sie das Quadrat von \frac{1}{2}, indem Sie das Quadrat des Zählers und das Quadrat des Nenners des Bruchs bilden.
b^{2}+b+\frac{1}{4}=\frac{25}{4}
Addieren Sie 6 zu \frac{1}{4}.
\left(b+\frac{1}{2}\right)^{2}=\frac{25}{4}
Faktor b^{2}+b+\frac{1}{4}. Wenn x^{2}+bx+c ein perfektes Quadrat ist, kann es im Allgemeinen immer als \left(x+\frac{b}{2}\right)^{2} faktorisieren.
\sqrt{\left(b+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
b+\frac{1}{2}=\frac{5}{2} b+\frac{1}{2}=-\frac{5}{2}
Vereinfachen.
b=2 b=-3
\frac{1}{2} von beiden Seiten der Gleichung subtrahieren.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}