Faktorisieren
a\left(x-2\right)\left(x+6\right)
Auswerten
a\left(x-2\right)\left(x+6\right)
Diagramm
Teilen
In die Zwischenablage kopiert
a\left(x^{2}+4x-12\right)
Klammern Sie a aus.
p+q=4 pq=1\left(-12\right)=-12
Betrachten Sie x^{2}+4x-12. Faktorisieren Sie den Ausdruck durch Gruppieren. Zuerst muss der Ausdruck als x^{2}+px+qx-12 umgeschrieben werden. Um p und q zu finden, stellen Sie ein zu lösendes System auf.
-1,12 -2,6 -3,4
Weil pq negativ ist, haben p und q entgegengesetzte Vorzeichen. Weil p+q positiv ist, hat die positive Zahl einen größeren Absolutwert als die negative. Alle ganzzahligen Paare auflisten, die das Produkt -12 ergeben.
-1+12=11 -2+6=4 -3+4=1
Die Summe für jedes Paar berechnen.
p=-2 q=6
Die Lösung ist das Paar, das die Summe 4 ergibt.
\left(x^{2}-2x\right)+\left(6x-12\right)
x^{2}+4x-12 als \left(x^{2}-2x\right)+\left(6x-12\right) umschreiben.
x\left(x-2\right)+6\left(x-2\right)
Klammern Sie x in der ersten und 6 in der zweiten Gruppe aus.
\left(x-2\right)\left(x+6\right)
Klammern Sie den gemeinsamen Term x-2 aus, indem Sie die distributive Eigenschaft verwenden.
a\left(x-2\right)\left(x+6\right)
Schreiben Sie den vollständigen, faktorisierten Ausdruck um.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}