Nach P_m auflösen (komplexe Lösung)
\left\{\begin{matrix}P_{m}=\frac{P_{s}T_{m}V_{s}}{T_{s}V_{m}}\text{, }&T_{s}\neq 0\text{ and }V_{m}\neq 0\text{ and }P_{s}\neq 0\text{ and }T_{m}\neq 0\\P_{m}\in \mathrm{C}\text{, }&\left(T_{s}=0\text{ or }V_{m}=0\right)\text{ and }V_{s}=0\text{ and }P_{s}\neq 0\text{ and }T_{m}\neq 0\end{matrix}\right,
Nach P_m auflösen
\left\{\begin{matrix}P_{m}=\frac{P_{s}T_{m}V_{s}}{T_{s}V_{m}}\text{, }&T_{s}\neq 0\text{ and }V_{m}\neq 0\text{ and }P_{s}\neq 0\text{ and }T_{m}\neq 0\\P_{m}\in \mathrm{R}\text{, }&\left(T_{s}=0\text{ or }V_{m}=0\right)\text{ and }V_{s}=0\text{ and }P_{s}\neq 0\text{ and }T_{m}\neq 0\end{matrix}\right,
Nach P_s auflösen
\left\{\begin{matrix}P_{s}=\frac{P_{m}T_{s}V_{m}}{T_{m}V_{s}}\text{, }&T_{s}\neq 0\text{ and }V_{m}\neq 0\text{ and }P_{m}\neq 0\text{ and }T_{m}\neq 0\text{ and }V_{s}\neq 0\\P_{s}\neq 0\text{, }&\left(T_{s}=0\text{ or }V_{m}=0\text{ or }P_{m}=0\right)\text{ and }V_{s}=0\text{ and }T_{m}\neq 0\end{matrix}\right,
Teilen
In die Zwischenablage kopiert
V_{s}P_{s}T_{m}=P_{m}V_{m}T_{s}
Multiplizieren Sie beide Seiten der Gleichung mit P_{s}T_{m}.
P_{m}V_{m}T_{s}=V_{s}P_{s}T_{m}
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
T_{s}V_{m}P_{m}=P_{s}T_{m}V_{s}
Die Gleichung weist die Standardform auf.
\frac{T_{s}V_{m}P_{m}}{T_{s}V_{m}}=\frac{P_{s}T_{m}V_{s}}{T_{s}V_{m}}
Dividieren Sie beide Seiten durch V_{m}T_{s}.
P_{m}=\frac{P_{s}T_{m}V_{s}}{T_{s}V_{m}}
Division durch V_{m}T_{s} macht die Multiplikation mit V_{m}T_{s} rückgängig.
V_{s}P_{s}T_{m}=P_{m}V_{m}T_{s}
Multiplizieren Sie beide Seiten der Gleichung mit P_{s}T_{m}.
P_{m}V_{m}T_{s}=V_{s}P_{s}T_{m}
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
T_{s}V_{m}P_{m}=P_{s}T_{m}V_{s}
Die Gleichung weist die Standardform auf.
\frac{T_{s}V_{m}P_{m}}{T_{s}V_{m}}=\frac{P_{s}T_{m}V_{s}}{T_{s}V_{m}}
Dividieren Sie beide Seiten durch V_{m}T_{s}.
P_{m}=\frac{P_{s}T_{m}V_{s}}{T_{s}V_{m}}
Division durch V_{m}T_{s} macht die Multiplikation mit V_{m}T_{s} rückgängig.
V_{s}P_{s}T_{m}=P_{m}V_{m}T_{s}
Die Variable P_{s} kann nicht gleich 0 sein, weil die Division durch null nicht definiert ist. Multiplizieren Sie beide Seiten der Gleichung mit P_{s}T_{m}.
P_{s}T_{m}V_{s}=P_{m}T_{s}V_{m}
Ordnen Sie die Terme neu an.
T_{m}V_{s}P_{s}=P_{m}T_{s}V_{m}
Die Gleichung weist die Standardform auf.
\frac{T_{m}V_{s}P_{s}}{T_{m}V_{s}}=\frac{P_{m}T_{s}V_{m}}{T_{m}V_{s}}
Dividieren Sie beide Seiten durch V_{s}T_{m}.
P_{s}=\frac{P_{m}T_{s}V_{m}}{T_{m}V_{s}}
Division durch V_{s}T_{m} macht die Multiplikation mit V_{s}T_{m} rückgängig.
P_{s}=\frac{P_{m}T_{s}V_{m}}{T_{m}V_{s}}\text{, }P_{s}\neq 0
Die Variable P_{s} kann nicht gleich 0 sein.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}