Nach P auflösen
\left\{\begin{matrix}P=\frac{6ST}{Q}\text{, }&Q\neq 0\\P\in \mathrm{R}\text{, }&\left(S=0\text{ or }T=0\right)\text{ and }Q=0\end{matrix}\right,
Nach Q auflösen
\left\{\begin{matrix}Q=\frac{6ST}{P}\text{, }&P\neq 0\\Q\in \mathrm{R}\text{, }&\left(S=0\text{ or }T=0\right)\text{ and }P=0\end{matrix}\right,
Teilen
In die Zwischenablage kopiert
ST=\frac{1}{6}PQ
Kombinieren Sie \frac{1}{2}PQ und -\frac{1}{3}PQ, um \frac{1}{6}PQ zu erhalten.
\frac{1}{6}PQ=ST
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
\frac{Q}{6}P=ST
Die Gleichung weist die Standardform auf.
\frac{6\times \frac{Q}{6}P}{Q}=\frac{6ST}{Q}
Dividieren Sie beide Seiten durch \frac{1}{6}Q.
P=\frac{6ST}{Q}
Division durch \frac{1}{6}Q macht die Multiplikation mit \frac{1}{6}Q rückgängig.
ST=\frac{1}{6}PQ
Kombinieren Sie \frac{1}{2}PQ und -\frac{1}{3}PQ, um \frac{1}{6}PQ zu erhalten.
\frac{1}{6}PQ=ST
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
\frac{P}{6}Q=ST
Die Gleichung weist die Standardform auf.
\frac{6\times \frac{P}{6}Q}{P}=\frac{6ST}{P}
Dividieren Sie beide Seiten durch \frac{1}{6}P.
Q=\frac{6ST}{P}
Division durch \frac{1}{6}P macht die Multiplikation mit \frac{1}{6}P rückgängig.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}