Nach R_0 auflösen (komplexe Lösung)
\left\{\begin{matrix}R_{0}=\frac{R}{at+1}\text{, }&t=0\text{ or }a\neq -\frac{1}{t}\\R_{0}\in \mathrm{C}\text{, }&R=0\text{ and }a=-\frac{1}{t}\text{ and }t\neq 0\end{matrix}\right,
Nach R_0 auflösen
\left\{\begin{matrix}R_{0}=\frac{R}{at+1}\text{, }&t=0\text{ or }a\neq -\frac{1}{t}\\R_{0}\in \mathrm{R}\text{, }&R=0\text{ and }a=-\frac{1}{t}\text{ and }t\neq 0\end{matrix}\right,
Nach R auflösen
R=R_{0}\left(at+1\right)
Teilen
In die Zwischenablage kopiert
R=R_{0}+R_{0}at
Verwenden Sie das Distributivgesetz, um R_{0} mit 1+at zu multiplizieren.
R_{0}+R_{0}at=R
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
\left(1+at\right)R_{0}=R
Kombinieren Sie alle Terme, die R_{0} enthalten.
\left(at+1\right)R_{0}=R
Die Gleichung weist die Standardform auf.
\frac{\left(at+1\right)R_{0}}{at+1}=\frac{R}{at+1}
Dividieren Sie beide Seiten durch 1+at.
R_{0}=\frac{R}{at+1}
Division durch 1+at macht die Multiplikation mit 1+at rückgängig.
R=R_{0}+R_{0}at
Verwenden Sie das Distributivgesetz, um R_{0} mit 1+at zu multiplizieren.
R_{0}+R_{0}at=R
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
\left(1+at\right)R_{0}=R
Kombinieren Sie alle Terme, die R_{0} enthalten.
\left(at+1\right)R_{0}=R
Die Gleichung weist die Standardform auf.
\frac{\left(at+1\right)R_{0}}{at+1}=\frac{R}{at+1}
Dividieren Sie beide Seiten durch 1+at.
R_{0}=\frac{R}{at+1}
Division durch 1+at macht die Multiplikation mit 1+at rückgängig.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}