Nach x auflösen
x = \frac{\sqrt{91}}{7} \approx 1,362770288
x = -\frac{\sqrt{91}}{7} \approx -1,362770288
Diagramm
Teilen
In die Zwischenablage kopiert
7x^{2}=16-3
Subtrahieren Sie 3 von beiden Seiten.
7x^{2}=13
Subtrahieren Sie 3 von 16, um 13 zu erhalten.
x^{2}=\frac{13}{7}
Dividieren Sie beide Seiten durch 7.
x=\frac{\sqrt{91}}{7} x=-\frac{\sqrt{91}}{7}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
7x^{2}+3-16=0
Subtrahieren Sie 16 von beiden Seiten.
7x^{2}-13=0
Subtrahieren Sie 16 von 3, um -13 zu erhalten.
x=\frac{0±\sqrt{0^{2}-4\times 7\left(-13\right)}}{2\times 7}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch 7, b durch 0 und c durch -13, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 7\left(-13\right)}}{2\times 7}
0 zum Quadrat.
x=\frac{0±\sqrt{-28\left(-13\right)}}{2\times 7}
Multiplizieren Sie -4 mit 7.
x=\frac{0±\sqrt{364}}{2\times 7}
Multiplizieren Sie -28 mit -13.
x=\frac{0±2\sqrt{91}}{2\times 7}
Ziehen Sie die Quadratwurzel aus 364.
x=\frac{0±2\sqrt{91}}{14}
Multiplizieren Sie 2 mit 7.
x=\frac{\sqrt{91}}{7}
Lösen Sie jetzt die Gleichung x=\frac{0±2\sqrt{91}}{14}, wenn ± positiv ist.
x=-\frac{\sqrt{91}}{7}
Lösen Sie jetzt die Gleichung x=\frac{0±2\sqrt{91}}{14}, wenn ± negativ ist.
x=\frac{\sqrt{91}}{7} x=-\frac{\sqrt{91}}{7}
Die Gleichung ist jetzt gelöst.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}