Direkt zum Inhalt
Auswerten
Tick mark Image
W.r.t. b differenzieren
Tick mark Image

Ähnliche Aufgaben aus Websuche

Teilen

\frac{7\left(b-9\right)}{b-9}-\frac{4}{b-9}
Um Ausdrücke zu addieren oder subtrahieren, erweitern Sie sie, um ihre Nenner gleichnamig zu machen. Multiplizieren Sie 7 mit \frac{b-9}{b-9}.
\frac{7\left(b-9\right)-4}{b-9}
Da \frac{7\left(b-9\right)}{b-9} und \frac{4}{b-9} denselben Nenner haben, subtrahieren Sie diese, indem Sie ihre Zähler subtrahieren.
\frac{7b-63-4}{b-9}
Führen Sie die Multiplikationen als "7\left(b-9\right)-4" aus.
\frac{7b-67}{b-9}
Ähnliche Terme in 7b-63-4 kombinieren.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{7\left(b-9\right)}{b-9}-\frac{4}{b-9})
Um Ausdrücke zu addieren oder subtrahieren, erweitern Sie sie, um ihre Nenner gleichnamig zu machen. Multiplizieren Sie 7 mit \frac{b-9}{b-9}.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{7\left(b-9\right)-4}{b-9})
Da \frac{7\left(b-9\right)}{b-9} und \frac{4}{b-9} denselben Nenner haben, subtrahieren Sie diese, indem Sie ihre Zähler subtrahieren.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{7b-63-4}{b-9})
Führen Sie die Multiplikationen als "7\left(b-9\right)-4" aus.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{7b-67}{b-9})
Ähnliche Terme in 7b-63-4 kombinieren.
\frac{\left(b^{1}-9\right)\frac{\mathrm{d}}{\mathrm{d}b}(7b^{1}-67)-\left(7b^{1}-67\right)\frac{\mathrm{d}}{\mathrm{d}b}(b^{1}-9)}{\left(b^{1}-9\right)^{2}}
Für zwei beliebige differenzierbare Funktionen ergibt sich die Ableitung des Quotienten der beiden Funktionen durch Multiplikation des Nenners mit der Ableitung des Zählers minus dem Produkt aus dem Zähler mit der Ableitung des Nenners, das Ganze dividiert durch das Quadrat des Nenners.
\frac{\left(b^{1}-9\right)\times 7b^{1-1}-\left(7b^{1}-67\right)b^{1-1}}{\left(b^{1}-9\right)^{2}}
Die Ableitung eines Polynoms ist die Summer der Ableitungen seiner Terme. Die Ableitung eines Terms mit Konstanten ist 0. Die Ableitung von ax^{n} ist nax^{n-1}.
\frac{\left(b^{1}-9\right)\times 7b^{0}-\left(7b^{1}-67\right)b^{0}}{\left(b^{1}-9\right)^{2}}
Führen Sie die Berechnung aus.
\frac{b^{1}\times 7b^{0}-9\times 7b^{0}-\left(7b^{1}b^{0}-67b^{0}\right)}{\left(b^{1}-9\right)^{2}}
Erweitern Sie mithilfe des Distributivgesetzes.
\frac{7b^{1}-9\times 7b^{0}-\left(7b^{1}-67b^{0}\right)}{\left(b^{1}-9\right)^{2}}
Um Potenzen der gleichen Basis zu multiplizieren, addieren Sie ihre Exponenten.
\frac{7b^{1}-63b^{0}-\left(7b^{1}-67b^{0}\right)}{\left(b^{1}-9\right)^{2}}
Führen Sie die Berechnung aus.
\frac{7b^{1}-63b^{0}-7b^{1}-\left(-67b^{0}\right)}{\left(b^{1}-9\right)^{2}}
Entfernen Sie unnötige Klammern.
\frac{\left(7-7\right)b^{1}+\left(-63-\left(-67\right)\right)b^{0}}{\left(b^{1}-9\right)^{2}}
Kombinieren Sie ähnliche Terme.
\frac{4b^{0}}{\left(b^{1}-9\right)^{2}}
7 von 7 und -67 von -63 subtrahieren.
\frac{4b^{0}}{\left(b-9\right)^{2}}
Für jeden Term t, t^{1}=t.
\frac{4\times 1}{\left(b-9\right)^{2}}
Für jeden Term t, außer 0, t^{0}=1.
\frac{4}{\left(b-9\right)^{2}}
Für jeden Term t, t\times 1=t und 1t=t.