Auswerten
\frac{17}{4}=4,25
Faktorisieren
\frac{17}{2 ^ {2}} = 4\frac{1}{4} = 4,25
Teilen
In die Zwischenablage kopiert
\frac{60+1}{12}-\frac{5}{6}
Multiplizieren Sie 5 und 12, um 60 zu erhalten.
\frac{61}{12}-\frac{5}{6}
Addieren Sie 60 und 1, um 61 zu erhalten.
\frac{61}{12}-\frac{10}{12}
Das kleinste gemeinsame Vielfache von 12 und 6 ist 12. Konvertiert \frac{61}{12} und \frac{5}{6} in Brüche mit dem Nenner 12.
\frac{61-10}{12}
Da \frac{61}{12} und \frac{10}{12} denselben Nenner haben, subtrahieren Sie diese, indem Sie ihre Zähler subtrahieren.
\frac{51}{12}
Subtrahieren Sie 10 von 61, um 51 zu erhalten.
\frac{17}{4}
Verringern Sie den Bruch \frac{51}{12} um den niedrigsten Term, indem Sie 3 extrahieren und aufheben.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}