Direkt zum Inhalt
Nach x auflösen
Tick mark Image
Nach x auflösen (komplexe Lösung)
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

80430587335437951845921127710495140134505930956790981674787620735993532493360592592242243732067646706109375636523120697559743178513198594503598322878201257201714879929710377837182022631168365478515625=5^{x}
Potenzieren Sie 5 mit 286, und erhalten Sie 80430587335437951845921127710495140134505930956790981674787620735993532493360592592242243732067646706109375636523120697559743178513198594503598322878201257201714879929710377837182022631168365478515625.
5^{x}=80430587335437951845921127710495140134505930956790981674787620735993532493360592592242243732067646706109375636523120697559743178513198594503598322878201257201714879929710377837182022631168365478515625
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
\log(5^{x})=\log(80430587335437951845921127710495140134505930956790981674787620735993532493360592592242243732067646706109375636523120697559743178513198594503598322878201257201714879929710377837182022631168365478515625)
Erstellen Sie den Logarithmus von beiden Seiten der Gleichung.
x\log(5)=\log(80430587335437951845921127710495140134505930956790981674787620735993532493360592592242243732067646706109375636523120697559743178513198594503598322878201257201714879929710377837182022631168365478515625)
Der Logarithmus einer potenzierten Zahl ist das Produkt aus dem Exponenten und dem Logarithmus der Zahl.
x=\frac{\log(80430587335437951845921127710495140134505930956790981674787620735993532493360592592242243732067646706109375636523120697559743178513198594503598322878201257201714879929710377837182022631168365478515625)}{\log(5)}
Dividieren Sie beide Seiten durch \log(5).
x=\log_{5}\left(80430587335437951845921127710495140134505930956790981674787620735993532493360592592242243732067646706109375636523120697559743178513198594503598322878201257201714879929710377837182022631168365478515625\right)
Durch die Formel zur Basisumrechnung \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).