Nach x auflösen
x=-\frac{7y}{13}+2
Nach y auflösen
y=\frac{26-13x}{7}
Diagramm
Teilen
In die Zwischenablage kopiert
4x+9y-97+9x=2y-71
Auf beiden Seiten 9x addieren.
13x+9y-97=2y-71
Kombinieren Sie 4x und 9x, um 13x zu erhalten.
13x-97=2y-71-9y
Subtrahieren Sie 9y von beiden Seiten.
13x-97=-7y-71
Kombinieren Sie 2y und -9y, um -7y zu erhalten.
13x=-7y-71+97
Auf beiden Seiten 97 addieren.
13x=-7y+26
Addieren Sie -71 und 97, um 26 zu erhalten.
13x=26-7y
Die Gleichung weist die Standardform auf.
\frac{13x}{13}=\frac{26-7y}{13}
Dividieren Sie beide Seiten durch 13.
x=\frac{26-7y}{13}
Division durch 13 macht die Multiplikation mit 13 rückgängig.
x=-\frac{7y}{13}+2
Dividieren Sie -7y+26 durch 13.
4x+9y-97-2y=-9x-71
Subtrahieren Sie 2y von beiden Seiten.
4x+7y-97=-9x-71
Kombinieren Sie 9y und -2y, um 7y zu erhalten.
7y-97=-9x-71-4x
Subtrahieren Sie 4x von beiden Seiten.
7y-97=-13x-71
Kombinieren Sie -9x und -4x, um -13x zu erhalten.
7y=-13x-71+97
Auf beiden Seiten 97 addieren.
7y=-13x+26
Addieren Sie -71 und 97, um 26 zu erhalten.
7y=26-13x
Die Gleichung weist die Standardform auf.
\frac{7y}{7}=\frac{26-13x}{7}
Dividieren Sie beide Seiten durch 7.
y=\frac{26-13x}{7}
Division durch 7 macht die Multiplikation mit 7 rückgängig.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}