Direkt zum Inhalt
Faktorisieren
Tick mark Image
Auswerten
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

4\left(x^{3}+x^{2}-12x\right)
Klammern Sie 4 aus.
x\left(x^{2}+x-12\right)
Betrachten Sie x^{3}+x^{2}-12x. Klammern Sie x aus.
a+b=1 ab=1\left(-12\right)=-12
Betrachten Sie x^{2}+x-12. Faktorisieren Sie den Ausdruck durch Gruppieren. Zuerst muss der Ausdruck als x^{2}+ax+bx-12 umgeschrieben werden. Um a und b zu finden, stellen Sie ein zu lösendes System auf.
-1,12 -2,6 -3,4
Weil ab negativ ist, haben a und b entgegengesetzte Vorzeichen. Weil a+b positiv ist, hat die positive Zahl einen größeren Absolutwert als die negative. Alle ganzzahligen Paare auflisten, die das Produkt -12 ergeben.
-1+12=11 -2+6=4 -3+4=1
Die Summe für jedes Paar berechnen.
a=-3 b=4
Die Lösung ist das Paar, das die Summe 1 ergibt.
\left(x^{2}-3x\right)+\left(4x-12\right)
x^{2}+x-12 als \left(x^{2}-3x\right)+\left(4x-12\right) umschreiben.
x\left(x-3\right)+4\left(x-3\right)
Klammern Sie x in der ersten und 4 in der zweiten Gruppe aus.
\left(x-3\right)\left(x+4\right)
Klammern Sie den gemeinsamen Term x-3 aus, indem Sie die distributive Eigenschaft verwenden.
4x\left(x-3\right)\left(x+4\right)
Schreiben Sie den vollständigen, faktorisierten Ausdruck um.