Direkt zum Inhalt
Faktorisieren
Tick mark Image
Auswerten
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

4\left(x^{2}-2x\right)
Klammern Sie 4 aus.
x\left(x-2\right)
Betrachten Sie x^{2}-2x. Klammern Sie x aus.
4x\left(x-2\right)
Schreiben Sie den vollständigen, faktorisierten Ausdruck um.
4x^{2}-8x=0
Ein quadratisches Polynom kann mithilfe der Transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) faktorisiert werden, wobei x_{1} und x_{2} die Lösungen der quadratischen Gleichung ax^{2}+bx+c=0 sind.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}}}{2\times 4}
Alle Gleichungen der Form ax^{2}+bx+c=0 können mithilfe dieser quadratischen Gleichung gelöst werden: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Die quadratische Gleichung ergibt zwei Lösungen, eine für ± bei Addition und eine bei Subtraktion.
x=\frac{-\left(-8\right)±8}{2\times 4}
Ziehen Sie die Quadratwurzel aus \left(-8\right)^{2}.
x=\frac{8±8}{2\times 4}
Das Gegenteil von -8 ist 8.
x=\frac{8±8}{8}
Multiplizieren Sie 2 mit 4.
x=\frac{16}{8}
Lösen Sie jetzt die Gleichung x=\frac{8±8}{8}, wenn ± positiv ist. Addieren Sie 8 zu 8.
x=2
Dividieren Sie 16 durch 8.
x=\frac{0}{8}
Lösen Sie jetzt die Gleichung x=\frac{8±8}{8}, wenn ± negativ ist. Subtrahieren Sie 8 von 8.
x=0
Dividieren Sie 0 durch 8.
4x^{2}-8x=4\left(x-2\right)x
Den ursprünglichen Ausdruck mithilfe von ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) faktorisieren. Setzen Sie für x_{1} 2 und für x_{2} 0 ein.